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Neurons in the primate extrastriate cortex are highly selective for
complex stimulus features such as faces, objects, and motion patterns.
One explanation for this selectivity is that neurons in these areas carry
out sophisticated computations on the outputs of lower-level areas
such as primary visual cortex (V1), where neuronal selectivity is often
modeled in terms of linear spatiotemporal filters. However, it has long
been known that such simple V1 models are incomplete because they
fail to capture important nonlinearities that can substantially alter
neuronal selectivity for specific stimulus features. Thus a key step in
understanding the function of higher cortical areas is the development
of realistic models of their V1 inputs. We have addressed this issue by
constructing a computational model of the V1 neurons that provide
the strongest input to extrastriate cortical middle temporal (MT) area.
We find that a modest elaboration to the standard model of V1
direction selectivity generates model neurons with strong end-stop-
ping, a property that is also found in the V1 layers that provide input
to MT. With this computational feature in place, the seemingly
complex properties of MT neurons can be simulated by assuming that
they perform a simple nonlinear summation of their inputs. The
resulting model, which has a very small number of free parameters,
can simulate many of the diverse properties of MT neurons. In
particular, we simulate the invariance of MT tuning curves to the
orientation and length of tilted bar stimuli, as well as the accompa-
nying temporal dynamics. We also show how this property relates to
the continuum from component to pattern selectivity observed when
MT neurons are tested with plaids. Finally, we confirm several key
predictions of the model by recording from MT neurons in the alert
macaque monkey. Overall our results demonstrate that many of the
seemingly complex computations carried out by high-level cortical
neurons can in principle be understood by examining the properties of
their inputs.

I N T R O D U C T I O N

A striking feature of the primate visual system is the increase
in the complexity of stimulus selectivity as one ascends the
hierarchy of extrastriate cortical regions. Whereas most neu-
rons in the primary visual cortex (V1) respond well to oriented
edges at a particular point in space, neurons in the temporal and
parietal processing streams respond well to specific faces or
complex motion patterns. This is often thought to reflect an
increase in the complexity of the computations performed by
the higher-level areas, but another possibility is that important
computations are performed in the neurons that provide input
to the extrastriate cortex. In this study we examine this latter
possibility in the context of a simple model of motion process-
ing in the dorsal visual pathway of the macaque monkey.

The earliest stage of the primate dorsal visual stream is the
V1, where receptive fields are generally �1° in diameter.
Neurons in the middle temporal (MT) area have receptive
fields tenfold this size and receptive fields in the medial
superior temporal (MST) area are larger still. Because most of
the visual input in these higher areas comes directly or indi-
rectly from V1, receptive fields in MT and MST are presum-
ably derived by spatially integrating the outputs of many
neurons with smaller receptive fields.

Spatial integration may serve many purposes, but in the
domain of motion processing it is likely to be of crucial
importance for overcoming a class of computational challenges
that can collectively be described as correspondence problems
(Ullman 1979). One example is the aperture problem (Fig. 1A),
in which the measurement of the velocity of a moving edge is
rendered ambiguous by the fact that any point along the edge
can be associated with any other point at a subsequent instant
in time (Wallach 1939). Consequently, there exists a family of
local velocity measurements that are consistent with the global
motion of the edge.

Physiological studies of the aperture problem have made use
of various kinds of visual stimuli. One of the best-known
examples is the plaid stimulus (Adelson and Movshon 1982),
which is composed of two gratings that are combined to form
a single motion pattern (Fig. 1B). In general the perceived
motion of the plaid corresponds to the motion of neither
grating, even though most neurons in V1 respond to the motion
of these components. However, many neurons in MT respond
to the motion of the pattern (Movshon et al. 1986) and this has
been interpreted as evidence that these neurons solve the
aperture problem. Other MT neurons have responses similar to
those of V1 cells, in that they respond to the motion of the plaid
components. Studies using additive, sinusoidal plaids have
generally reported roughly equal numbers of component-selec-
tive and pattern-selective neurons in MT (Movshon et al.
1986).

A second class of stimuli used in physiological studies of the
aperture problem contains moving features that provide locally
unambiguous motion signals. One example is a tilted bar
stimulus (Li et al. 2001; Lorenceau et al. 1993; Pack and Born
2001), the endpoints of which provide velocity signals that can
in principle be extracted by very small receptive fields (Fig.
1A). For these stimuli one finds that the vast majority of
macaque MT cells accurately signal motion direction, in the
sense that their responses to motion depend very little on the
orientation of the bars that comprise the stimulus (Pack and
Born 2001). In these experiments the neurons were not classi-
fied as pattern- or component-selective, so the relationship
between the responses to the two types of stimuli is not entirely
clear.
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Component cells are typically modeled using a simple mo-
tion energy detector (Adelson and Bergen 1985), which has
been highly successful in accounting for a variety of physio-
logical and psychophysical findings. A key feature of the
motion energy model is that its receptive field is a linear filter
that effectively responds to only one plaid component at any
point in time (thus the component selectivity). The responses
of such a model to the tilted bar stimuli described earlier have
not been examined, but as we show in the following text,
motion energy models, in contrast to MT neurons, make large
errors in signaling the motion of the tilted bar (see Fig. 3).

Numerous models have been designed to simulate pattern
selectivity by combining the outputs of motion energy detec-
tors in various ways. A common feature of these models is the
existence of nonlinear interactions among V1 neurons (Simo-
ncelli and Heeger 1998), the result of which is sometimes
described as normalization (Heeger 1992). Indeed recent mod-
eling work has suggested that such interactions are necessary
for pattern selectivity in MT (Rust et al. 2006), although in that
work the spatial form of the normalization was not specified.

In this work we suggest that all of the above-mentioned
results on motion integration in MT can be accommodated by
a model that incorporates a spatially specific type of normal-
ization at the level of V1. The model is composed of a number
of motion energy detectors that are connected to each other in
such a way as to provide normalization that is stronger along
each cell’s preferred orientation axis. This property is often
called end-stopping in the physiological literature (Hubel and
Wiesel 1965) and end-stopped V1 neurons have been shown to
be capable of responding exclusively to the motion of the
endpoints of bars (Pack et al. 2003). Moreover, cells with these
properties are extremely common in the MT-projecting layers
of V1 (Sceniak et al. 2001), suggesting that they may play a
key role in motion integration (Noest and van den Berg 1993;
van den Berg and Noest 1993).

The model provides a straightforward means of connecting
the various results on motion integration in MT. We find that
motion energy detectors combined with end-stopping can solve
the aperture problem for tilted bar stimuli, but that the same
model neurons are component-selective when tested with plaid
stimuli. Pattern selectivity can be generated in the model by
combining the outputs of model units tuned to different motion
directions, so as to generate broad direction tuning. Thus
end-stopping is necessary to model MT responses to tilted bars,
but not sufficient for pattern selectivity, and this explains the
differences in motion integration seen with the two classes of
stimuli. Our results suggest that V1 end-stopping is crucial to
the function of all MT cells and that the continuum from

component to pattern selectivity simply reflects the variation in
direction tuning bandwidth observed in this area. These results
thus demonstrate that complex properties found in the extra-
striate cortex can in principle be attributed to computations that
are already present in the inputs from V1.

M E T H O D S

Modeling methods

MT receptive fields are composed of multiple, nearly identical
subunits (Livingstone et al. 2001) (Supplemental Fig. S1) whose
responses can be approximated as motion energy detectors (Pack et al.
2006).1 We have therefore constructed a model of a single MT
receptive field consisting of a population of identical motion energy
subunits tiled across space (Fig. 2B). We have extended this basic
model by incorporating suppressive input from neighboring detectors
arranged along the length of the excitatory receptive field, to simulate
in a straightforward way the effects of end-stopping (Supplemental
Fig. S2A). This suppressive influence is modeled with standard
divisive normalization (Heeger 1992). The outputs of these end-
stopped neurons are then fed into a model MT neuron, which sums
them over space and time. The entire MT model was implemented in
MATLAB (The MathWorks).

ENERGY MODEL. Figure 2A shows the standard motion energy
detector (Adelson and Bergen 1985), which we describe here briefly
for completeness. Each V1 receptive field was modeled with a pair of
phase-shifted Gabor filters and a pair of temporal filters. The Gabor
filters had a spatial frequency of 2 cycles/° and SD of 0.25°, which
yielded a receptive field size of about 1° in diameter. In our simula-
tions the spatial resolution was 20 pixels/°. The temporal filters took
the form suggested by Adelson and Bergen (1985)

f(t) � (gt)ne�gt� 1

n !
�

(gt)2

(n � 2)!� (1)

where n is 3 for one filter and 5 for the other, g is 100, and the sample
time is 8 ms. The filters were shifted in time so that the peak response
of the fast filter occurred at 48 ms and that of the slow filters occurred
at 64 ms.

The response of the energy model was computed by taking the dot
product of the spatial filters and the stimulus and convolving the
resulting outputs with the temporal filters. The result of this operation
was then combined and squared in such a way to produce direction
selectivity that was invariant to the spatial phase of the stimulus. As
suggested by Adelson and Bergen (1985), we added a square root
operation after the sum-of-squares to keep the output within a rea-
sonable range.

END-STOPPING. We elaborated on the basic motion energy model by
adding a nonlinear, suppressive component, which appears at the

1 The online version of this article contains supplemental data.
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A B FIG. 1. Stimuli used in the simulations. A: tilted bar
stimulus. The orientation of the bar is rotated 45° counter-
clockwise with respect to its direction of motion. The
direction of motion measured at the endpoints contains
2-dimensional features corresponding to the veridical mo-
tion direction. The edge of the bar contains only one-
dimensional features that correspond to the direction of
motion perpendicular to stimulus orientation. The ambigu-
ity of these signals results from the aperture problem. B:
plaid stimulus. The plaid stimulus is composed of 2 gratings
drifting in different directions of motion (top). When the
gratings are superimposed (bottom) the perceived direction
of the resulting pattern corresponds to the motion of neither
component.
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separable response stage (Fig. 2A, box in the top right). The effects of
end-stopping were modeled as an interaction between a center unit
and six surround units, with three units above and three units below
a vertically oriented cell; all units were identical motion energy
detectors as defined earlier. The center and surround units were spaced
1° apart and aligned either obliquely or along the length of the center
cell (Supplemental Fig. S2A).

For each stimulus presentation the model summed the outputs of
the surround units placed on either end (up or down for a vertically
oriented cell) of the center unit. Rather than summing the raw output
of each unit we used the envelope of the temporal responses, defined
according to

hrup(t) � �
i�1

3

�H[rupi
(t)]� (2)

hrdown(t) � �
i�1

3

�H[rdowni
(t)]� (3)

where rupi
(t) and rdowni

(t) are the outputs of the separable responses of
the top ith and bottom ith cells in the case of a vertically oriented
center cell (other orientations were generated by rotating the septuplet
of center and surround cells by the appropriate angle). The envelopes
of the responses in Eqs. 2 and 3 were computed via the Hilbert
transform and this was done primarily to reduce the number of units
in the model (and thus to speed up the simulations), but an equivalent
result could be obtained by using a collection of surround units with
different temporal impulse response functions.

The total surround response was then given by the following
function

rsurround(t) � �hrup(t) · hrdown(t) (4)

The use of a multiplicative interaction in the equation ensured that the
center cell was maximally inhibited when surround cells above and
below the center unit were active. This allowed the model end-stopped
unit to simulate two properties of real end-stopped cells: It was
strongly suppressed by a long bar centered on its receptive field, but

responded well to the endpoints of the same stimulus (Hubel and
Wiesel 1965; Pack et al. 2003). As we show in the following text this
type of interaction generated end-stopping that was similar in strength
to that found in V1 (see Fig. 7). The square root operation, similar to
that of the motion energy model, helped to maintain the inhibition
strength within a reasonable range.

The final output of the end-stopped unit was then given by

Rend�stopped(t) �
rin(t)

� � rin(t) � krsurround(t � d)
(5)

where rin(t) is the response of the center cell; rsurround(t � d) is the
total surround response, which influences the output of the model
neuron at a delay d; and k is a gain parameter that is one of the two
free parameters that were manipulated to obtain the results described
in the following text. The constant � (set to 1 for all simulations)
prevented the model output from becoming too large in the presence
of weak inputs, but as we show later it also played an important role
in accounting for some of the temporal dynamics observed in MT.
Another advantage of modeling suppressive input as divisive (rather
than subtractive) is that divisive inhibition better accounts for the
observed interactions between contrast and surround suppression
(Cavanaugh et al. 2002). This equation is similar to that used in
standard normalization models (Heeger 1992), with the crucial dif-
ference being the spatial specificity implicit in the end-stopped model.
This formulation allows us to explore the role of this spatial specificity
in accounting for data from MT.

MT INTEGRATION. For all simulations the input to the model MT cell
came from the outputs of 22,801 identical end-stopped V1 units.
Integration at the MT stage of the model was achieved by applying a
“Soft-Maximum” (hereafter referred to as SoftMax) operation to the
outputs of a population of end-stopped cells tiled 0.1° apart from each
other. SoftMax is a simple way of combining inputs over space and
time, while capturing a variety of nonlinearities that are observed in
real neuronal responses, with a minimal number of free parameters

MT Response
SoftMax

MT Cell
Stimulus(x,y,t)

(  )2 (  )2 (  )2 (  )2

[f(x)]

BA

FIG. 2. Model. A: motion energy model (adapted from
Adelson and Bergen 1985). The stimulus is processed by 2
spatial filters and the resulting outputs are convolved with
several temporal filters, recombined, squared, summed, and
passed through a square root operation prior to the compu-
tation of an opponent stage. See METHODS for details. The
end-stopped stage is added at the initial stage (dotted box,
top right). B: middle temporal (MT) model. The MT cell
receives input from a population of primary visual cortex
(V1) cells with spatially shifted receptive fields. The output
is determined by summing over these inputs with SoftMax
weighting.
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(Lampl et al. 2004; Riesenhuber and Poggio 1999). The SoftMax
equation is as follows

MT(t) � �
i�1

n ���t��
t Ri(�)���t��

t epRi(�)

� j�1
n ���t��

t epRj(�)
(6)

Here Ri(t) and Rj(t) are the responses of the ith and jth end-stopped cells,
� is the integration time constant, and p is a parameter that determines the
degree of nonlinearity at the summation stage. Small values of p cause the
model to perform a vector average of the inputs, whereas very large
values of p correspond to a winner-take-all strategy. Previous work has
suggested that a vector average is a reasonable approximation to the
operation performed in MT neurons on their inputs (Pack et al. 2004;
Snowden et al. 1992), so we set p � 2.5, which represents a vector
average with an amplification of larger inputs relative to smaller ones.
This manipulation is conceptually (and mathematically) quite similar to
the introduction of an accelerating static nonlinearity at the V1 stage
(Simoncelli and Heeger 1998). We found empirically that the value of �
had little effect on the simulations, so we set it to 16 ms, which conferred
a low-pass characteristic on the temporal responses of the neurons.

MT OUTPUT NONLINEARITY. For the plaid simulations, the output of
MT neurons included a static nonlinear component, which we mod-
eled with a sigmoid function of the form

rsnl �
rmax

1 � el(rmid�rbw) � ro (7)

Here, rsnl is the nonlinear output of MT. The free parameters rmax �
1.1, l � 11, rmid � 1, and ro � 0.1 correspond to the maximum
response, the degree of the slope, the half-maximum response, and the
minimum response of the sigmoid function, respectively.

Neurophysiology methods

ELECTROPHYSIOLOGICAL RECORDINGS. For the plaid experiments,
we prepared two rhesus macaque monkeys for experiments by per-
forming a sterile surgical procedure to implant a headpost and a
recording cylinder. The recording chamber was positioned to allow
for a posterior approach of the microelectrode through the occipital
lobe to MT, which was subsequently identified based on anatomical
magnetic resonance imaging scans, the clustering of direction-selec-
tive neurons, and the depth of the electrode penetration. Following
recovery, the monkeys were trained to fixate a small red dot on a
computer monitor. Eye position was monitored at 200 Hz with an
infrared camera (SR Research) and was required to be in a fixation
window of 2°. We performed single-unit recordings using tungsten
microelectrodes. Waveforms were first sorted on-line and subse-
quently re-sorted off-line using spike-sorting software (Plexon).

The data for the bar field experiments consisted of unpublished
results related to a prior set of experiments (Pack and Born 2001).
Electrophysiological methods were identical to those described in the
previous publication (Pack and Born 2001) and identical to those used
to collect the plaid data, with the exception that eye position in these
experiments was monitored with an eye coil.

PROCEDURE AND VISUAL STIMULI. On each trial a fixation point
appeared and the monkeys were required to fixate for 300 ms before
the appearance of the stimulus. For each neuron, we first characterized
direction selectivity with a drifting sinusoidal grating of optimal size,
position, and spatial and temporal frequency on a gray background
(luminance of 70.3 cd/m2). Prior to the onset of motion the grating
remained stationary for 200 ms, after which it began moving in one of
12 randomly interleaved directions spaced around the circle at 30°
intervals. The plaid stimuli were constructed by superimposing two
gratings at half the grating contrast oriented 120° apart. Stimuli were
displayed at 60 Hz at a resolution of 1,920 � 1,200 pixels and the
viewing area subtended 70 � 42° of visual angle at a distance of 42

cm. All neurons were tested with high (100%) and low (10 or 5%)
contrast stimuli.

The bar field stimuli were identical to those used in Pack and Born
(2001). The size of the stimuli was chosen to match the size of the
receptive field, which was estimated by hand-mapping with a small
bar stimulus. Although this method underestimates the extent of the
receptive field, it also ensures that the bar field stimuli used did not
extend into the surrounds of the MT cells. Each bar subtended 3° on
a grid spacing of 5°, except in the experiment on bar length, where we
used lengths of 2, 4, 6, and 8°. In this case the spacing between bars
was adjusted to keep the total luminance of the stimulus constant
across bar lengths. On each trial the stimulus appeared on the screen
and was stationary for 250 ms before moving in one of 8 directions
(45° spacing) or one of 12 directions (30° spacing). A subset of
neurons was tested with a bar length of 3° at high- (61.9 cd/m2) and
low-luminance stimuli, with the latter being defined in this case
subjectively as the lowest contrast that would reliably drive each cell.
The resulting bar luminances ranged from 0.28 to 0.54 cd/m2 in
experiments involving a black background (0.024 cd/m2) and 16 to
20.0 cd/m2 for those involving a gray (15.49 cd/m2) background.
Since there were no obvious differences between the results in the two
background luminance conditions, data were combined across them.
All directions and contrasts were randomly interleaved.

Data analysis

Unless otherwise noted, spikes were averaged over a time period
that spanned from 150 ms after the onset of stimulus motion until the
end of the stimulus. This time period was chosen to exclude the early
response period, during which the selectivity of MT neurons often
changes substantially (Pack and Born 2001; Pack et al. 2001). Neu-
rons were considered direction-selective if their tuning curves could
be fit to a von Mises function (P � 0.05 for an F-ratio test).
Recordings that did not meet these criteria were not included in the
analysis. Bandwidth was calculated as the full width at half-maximum
of the von Mises function.

The responses to plaids were classified according to the Z-trans-
formed partial correlation coefficients between the data and the
component and pattern predictions (Smith et al. 2005; Tinsley et al.
2003) using the following equations (shown for the Z-transformed
pattern correlation)

Zp � 0.5� ln �1 � PCp

1 � PCc
�

�1 ⁄ (n � 3)
	 (8)

where n corresponds to the number of motion directions (12 in our
experiments) and PCp is defined as follows

PCp �
Rp � RcRcp

�(1 � Rc
2)(1 � Rcp

2 )
(9)

where Rp and Rc are the raw correlations between the data and the
pattern prediction and component predictions, respectively, and Rcp is
the raw correlation between the two predictions. The Z-transformed
component correlation (Zc) can be obtained by exchanging PCp and
PCc and the partial correlation (PCc) between the component predic-
tion and the data can be obtained by replacing Rp with Rc in the
preceding equations. The pattern index was defined for each cell
as Zp � Zc.

R E S U L T S

Our goal in this study was to develop a simple computational
model that accounts for the data on two types of stimuli that
probe the ability of MT neurons to overcome the aperture
problem. In this section we present the results of the model,
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along with MT data that provide a test of one of the main
model assumptions.

Tilted bar stimulus

As shown in Fig. 1A, a tilted bar stimulus provides a direct
way to assess the effects of the aperture problem on the
responses of neurons in the visual cortex. The majority of local
motion measurements are limited to the component of motion
perpendicular to the orientation of the bar, with the correct
velocity signals being available only near the endpoints, which
comprise a small fraction of the stimulus area. Nevertheless,
the vast majority of MT cells respond to the motion of this
stimulus in a way that does not depend on bar orientation. A
role for the endpoints in driving MT responses was subse-
quently confirmed in both MT and V1 end-stopped neurons
(Pack et al. 2003, 2004). To assess the role of end-stopping, the
response of the model to tilted bar stimuli was evaluated both
with and without end-stopping.

MODEL MT RESPONSES WITHOUT V1 END-STOPPING. Figure 3
shows the responses of the V1 population to a bar subtending
3°, moving at a speed of about 6°/s after remaining stationary
for 240 ms, in 16 different directions spaced evenly around the
circle. Bar orientation was always rotated 45° clockwise with
respect to the direction of motion. Each pixel in the population
activity map corresponds to the time-averaged response of a
V1 neuron that prefers leftward motion. The MT response is
obtained by integrating the output responses of the population
of V1 neurons (Fig. 2B). For these simulations we disabled
end-stopping by setting the gain of the divisive normalization
in Eq. 5 to k � 0. Thus the output of the MT model is simply
the normalized motion energy outputs described in METHODS

filtered through the nonlinear SoftMax operation; this output is
shown as the tuning curve in the center of the figure.

A few points are evident in the simulation. First, the peak of
the population activity clearly occurs for upward and leftward
motion (135°), even though the model neuron’s preferred
direction of motion is leftward. This is a direct consequence of
the aperture problem: a vertically oriented bar moving upward
and leftward generates local motion signals that correspond to
the leftward component of motion, irrespective of the vertical
component (Fig. 1A), leading to an error of �30° in the
direction tuning curve. We refer to this rotation of the tuning
curve from the neuron’s actual preferred direction as the
angular deviation. In contrast to the results shown in Fig. 3,
real MT neurons tested with the same stimuli showed an
average angular deviation of about 5° (Pack and Born 2001).
Second, the tuning curve is narrow despite the compressive
nonlinearity (square root) at the oriented energy stage, normal-
ization, and the SoftMax integration. In other words the re-
sponse in the upward-leftward direction far exceeds the re-
sponses in other directions, which yields a tuning curve that is
narrower than those typically observed in MT (Albright 1984).
Finally, the moving bar stimulus clearly contains a small
amount of motion energy in the neuron’s preferred direction
(180°), as shown by the two activity blobs in the population
output. These responses correspond to model V1 neurons that
are stimulated by the endpoints of the moving bar and their
modest amplitude reflects the need for a nonlinear operation to
calculate the correct direction of bar motion.

MODEL MT RESPONSES WITH V1 END-STOPPING ENABLED. End-
stopping offers a natural solution to the problem illustrated in
Fig. 3, since it attenuates the ambiguous responses to the bar

x (deg.)
−3 −1.5 0 1.5 3

−3

−1.5

0

1.5

3

y 
(d

eg
.)

FIG. 3. Model MT responses without V1 end-stopping.
The tuning curve at the center shows the response of a
model MT cell preferring leftward motion to a tilted bar
moving in various directions, with an orientation that is
tilted by 45° with respect to the direction of motion (bar/
arrow icons). The angular deviation from the preferred
direction of motion of the MT cell is 33.4°. Each peripheral
panel shows the population responses, wherein each pixel
corresponds to the activity of a single model V1 cell that
prefers leftward motion.
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stimulus, while having little effect on the responses to the
endpoints (Hubel and Wiesel 1965; Pack et al. 2003). Figure 4
shows the tuning curve and the population activity map for the
same tilted bar stimulus, but with end-stopping turned on by
setting the gain term in Eq. 5 to k � 5.

From Fig. 4 it can be seen that the V1 population now
responds primarily to the endpoints of the bar, while remaining
strongly selective for leftward motion. Moreover, the MT
tuning curve now has a reasonably broad bandwidth, which is
consistent with the physiological responses of real MT neurons
(Albright 1984), resulting from the compressive nonlinearity
inherent in the divisive inhibition of the end-stopping model,
which attenuates the amplitude of the responses to the one-
dimensional motion signals that otherwise far exceed the re-
sponses to the endpoints. End-stopping thus allows the model
neuron to overcome the aperture problem by eliminating am-
biguous signals found along the length of the bar. The pre-
ferred direction of the tuning curve found in the center of the
figure is now 3.5° away from the correct motion direction,
which is similar to what was found in MT (Pack and Born
2001). Thus the addition of a straightforward mechanism for

end-stopping substantially improves the correspondence of the
model output to MT physiology.

IMPORTANCE OF SPATIALLY SPECIFIC SUPPRESSION. Several pre-
vious models of MT motion integration have also made use of
divisive normalization at the V1 stage and this has been shown
to be particularly important for capturing the responses to plaid
stimuli (Rust et al. 2006). However, these models do not
specify the spatial structure of the normalization pool, whereas
we have claimed that the arrangement of inhibitory units can be
important for modeling the responses to the tilted bar stimulus.
To further test this idea, we reran the simulation depicted in
Fig. 4 with different surround configurations (Supplemental
Fig. S2).

Figure 5 shows the results of the tilted bar simulation for
various values of the parameter k, which controls the strength
of the inhibitory contribution from the surround units. When
the model surround consisted of only two inhibitory units
located on either side along an axis perpendicular to the center
unit’s preferred orientation (side-stopping), the residual error
in the preferred motion direction did not change for any value
of the gain parameter k (blue line). Inclusion of the oblique
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inhibitory units (green line) somewhat decreased the angular
deviation, but the residual error never dropped to �15°. We
then tested the model with two inhibitory units located along
the center unit preferred orientation axis only (end-stopping)
and found that the model was able to achieve nearly perfect
performance for reasonable values of the suppression param-
eter k (red line). The performance further increased when we
included inhibitory units along the oblique axes (cyan line),
whereas the extension of the end-stopped model to include a
homogeneous surround (Supplemental Fig. S2E) did not ap-
preciably improve the result (magenta line). Taken together,
these results suggest that end-stopping is both necessary and
sufficient to account for the MT data on tilted bar stimuli. This
bears on many empirical findings on V1 surrounds because
they are not typically distributed homogeneously in space at
the level of single cells. Moreover, the surround asymmetries
vary across V1 layers with end-stopped cells congregating in
MT-projecting layer 4B (Sceniak et al. 2001).

Thus far the results suggest that a spatial surround that
includes end-stopping is important for motion integration and
that this property is robust to the addition of surround units at
other spatial locations. A related question is whether the
performance of the model is similarly robust to the addition of
surround units with tuning for different motion directions. To
address this issue we tested an end-stopped surround that also
included inhibitory units tuned to different orientations (hori-
zontal, vertical, oblique left, and oblique right), above and
below the center unit. Again, performance does not appreciably
change (brown line), suggesting that the end-stopped model is
both useful for motion integration and robust to the addition of
other types of surround units.

BAR LENGTH INVARIANCE IN REAL MT CELLS AND IN THE

MODEL. The previous sections have shown that an MT model
that receives end-stopped V1 input can calculate the motion
direction for tilted bar stimuli by preferentially responding to
the two-dimensional (2D) motion signals present in the stim-
ulus. A direct prediction of this line of reasoning is that
increasing the length of the bars will have little or no effect on
the responses of MT neurons because this manipulation does
not affect the stimulus features to which end-stopped neurons
are sensitive. We tested this prediction by recording from 44
MT neurons while presenting stimuli of varying direction, tilt
angle, and length. As in the previous sections, we quantified
the ability of MT neurons to accurately compute motion
direction in terms of changes in the preferred motion direction
with the tilt of the bars relative to their motion direction.

Figure 6A summarizes the results of this experiment for the
MT data. Each panel shows the distribution of preferred
directions relative to those measured during the control condi-
tion (no tilt) for a given bar length. In each case there is a
distribution of angular deviations, but the mean of this distri-
bution does not significantly change with bar length (ANOVA,
P � 0.9). Figure 6B shows that the model MT neuron is
similarly insensitive to bar length, with the angular deviations
increasing only slightly with bar length from a value of 2.7° for
a bar length of 2 to 7.66° for a bar length of 8°. The mean
angular deviations for the same set of bar lengths in MT ranged
from 4.8 to 7.3°. We also did not observe an effect of bar
length on firing rate in the MT population (ANOVA, P � 0.5)
or in the model.

Although there was no statistically significant effect of bar
length on the angular deviations of the MT population, there
was substantial variability across individual neurons. This
raises the possibility that individual neurons might exhibit
strong effects of bar length but that this relationship might be
obscured by the population analysis. To examine this possibil-
ity more closely, we plotted the angular deviation for short
versus long bars for each of the 44 MT cells in Fig. 6E. These
values were strongly correlated (P � 0.001), suggesting that
the angular deviations for small bars were predictive of those
for long bars on a cell by cell basis. Importantly, there was no
evidence for a subpopulation of cells that had small errors for
short bars and large errors for long bars. Thus the responses of
MT cells were generally immune to large changes in the
strength of one-dimensional motion signals, except for a mod-
est and nonsignificant tendency for angular deviation to in-
crease with increasing bar length. Similar results were found in
the model for changes in bar width as well (results not shown).

Although bar length might be expected to affect local motion
measurements, a more relevant quantity is the bar length
relative to the size of the receptive fields that process the
stimulus. Receptive field size in early visual areas is strongly
linked to retinal eccentricity; thus a straightforward prediction
of this line of reasoning is that the angular deviations observed
in MT might depend on eccentricity and that this dependence
may interact with bar length (Lorenceau et al. 1993). Figure 6C
shows the angular deviations for the tilted bar stimuli of
different lengths for cells with receptive fields within 10°
eccentricity (top; and for those �10°, bottom). In general,
angular deviations at all bar lengths are smaller for the more
eccentric cells, suggesting that large receptive fields are less
affected by the aperture problem for a given bar length. We
have previously found a similar trend in data from experiments
involving smooth pursuit eye movements (Born et al. 2006).

This analysis yielded another interesting finding related to
the interaction of receptive field size and bar length. From Fig.
6C it is apparent that the angular deviation actually decreases
for the peripheral cells as bar length is increased from 2 to 4°.
This tendency is also present in our model (Fig. 6D) because
the endpoints of very short bars fail to activate the surround of
V1 neurons.

EFFECTS OF STIMULUS CONTRAST ON END-STOPPING. Our MT
model is consistent with the findings of Sceniak et al. (2001)
who showed that V1 neurons in the layer that has the strongest
MT projection are strongly surround-suppressed and that their
length suppression is stronger than their side suppression. In a
related study (Sceniak et al. 1999), it was shown that surround
suppression is highly dependent on stimulus contrast, such that
suppression is reduced or eliminated as contrast decreases (Fig. 7A).
In our model one might expect similar behavior, given that the
suppression term in the denominator of Eq. 5 depends on both
the normalization strength rin � krsurround and an offset value
that we have set to � � 1. For low contrasts the value of rin �
krsurround �� �, so the response depends primarily on activity
of the center unit, with the inhibitory input being negligible.
For higher contrasts rin � krsurround �� �, so the response is
suppressed for large stimulus sizes.

To verify that our model exhibits behavior similar to that of
the neurons reported in the previous studies, we tested the
responses of a single end-stopped unit in our model to a
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drifting grating of varying contrast. In the Sceniak et al. (1999)
study, the contrast levels for each neuron were chosen to be on
the low and high ends of the linear region of the cell’s contrast
response function. We performed an analogous test by first
calculating a contrast response function for the model neuron
and then choosing contrasts that yielded responses that were,
respectively, 60 and 30% of the saturation response. The results
(Fig. 7B) show contrast-dependent effects that are qualitatively
similar to the physiological data, with receptive field size increas-
ing and surround suppression strength decreasing at low contrast
(dotted line) compared with high contrast (solid line). Recordings
from V1 cells have shown somewhat greater effects of contrast on
receptive field size and these effects can be modeled with the
addition of a separate contrast gain parameter for the inhibitory
units (Cavanaugh et al. 2002). We have not incorporated this
property into our model because it would involve additional free
parameters.

The contrast dependence of end-stopping provides us with a
straightforward means of testing the key model hypothesis that
end-stopping is responsible for many of the complex response
properties found in MT. Specifically, if MT solves the aperture
problem by virtue of end-stopped inputs, then it follows from
the results shown in Fig. 7 that motion integration should be
less accurate for low-contrast tilted bar stimuli. We tested this
idea using data related to a previously published study (Pack
and Born 2001). Figure 8A shows the responses of an example
MT cell for bars with orientation perpendicular to the motion
direction (solid curves) and for those rotated 45° (dotted
curves) clockwise. As contrast decreases, the preferred direc-
tion for the perpendicular condition changes very little,
whereas that for the tilted bars rotates by �30°. Thus the
neuron is more affected by the aperture problem for low-
contrast bars than for high-contrast bars. For comparison, Fig.
8B shows the contrast dependence of our model for the same
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stimuli. As contrast level decreases, the ratio of inhibitory
strength relative to the excitatory strength decreases and one-
dimensional motion signals have a stronger effect on the output
of MT.

The rotation of the tuning curves can be used as a measure
of the influence of contrast on motion integration in MT. We

calculated this measure for 17 MT cells, by taking the vector
average of the tuning curves under the two orientation condi-
tions; the results are plotted in Fig. 8C for both high and low
contrasts. Here each point corresponds to a single neuron’s
preferred direction and it is clear that this direction changes for
nearly all of the neurons tested at low contrast. Specifically, at
low contrast the preferred direction rotates toward that pre-
dicted by the component of motion perpendicular to the orien-
tation of the bars. Although the sample size was not terribly
large, the effect was quite consistent across cells and highly
significant for the population (P � 0.001). A similar effect of
contrast on perceived motion direction has been observed
psychophysically (Lorenceau et al. 1993).

TEMPORAL DYNAMICS IN REAL MT CELLS AND IN THE MODEL. For
the bar-field stimuli used in the previous study, Pack and Born
(2001) showed that MT initially responds strongly to one-
dimensional motion signals and subsequently encodes the true
direction of motion after a delay of about 60 ms. We examined
this result in more detail to determine whether our model could
produce similar results. Figure 9A shows the angular deviation
plotted against time for different delays, which was achieved
by changing the delay parameter d in Eq. 5. We began
measuring the angular deviation at the peak of the temporal
impulse response of the motion energy model (48 ms). Sur-
prisingly, even when no explicit temporal delay was incorpo-
rated into any stage of the model (i.e., when d was 0), the
temporal transition (blue line) was qualitatively similar to that
observed in real MT cells (Pack and Born 2001).

The model explanation for these intrinsic temporal dynamics
is quite similar to that outlined previously for the effects of
contrast on end-stopping. Specifically, immediately following
the onset of stimulus motion the outputs of both the center and
the surround units are near zero. For such small responses the
influence of the surround is negligible, so that the surround
plays only a minor role early in the temporal response, just as
it plays a very minor role for low-contrast stimuli. Specifically,
for the initial response of the model, the value of rin �
krsurround �� � in Eq. 5, so the output of the model is essentially
proportional to the raw motion energy in the numerator of Eq.
5. As shown in Fig. 3, this output is heavily influenced by
one-dimensional motion signals. Once the responses of the mo-
tion energy units increase so that rin � krsurround �� �, the
surround influence substantially reduces the response to the pre-
ferred orientation, while preserving the response to the preferred
motion direction, as shown in Fig. 4. A similar explanation for
other temporal effects in V1 has been previously proposed (Car-
andini et al. 1997).
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The match between the temporal dynamics observed in the
model and that observed in real MT cells could be improved
through the introduction of explicit delays in the surround
response. Figure 9A shows the effects on the temporal response
of changing the parameter d in Eq. 5 to various values. Not
surprisingly, larger values of d simply delayed the transition
from one- to 2D motion responses (green: d � 8 ms, red: d �
16 ms, cyan: d � 24 ms; and magenta: d � 32 ms) in Fig. 9A.
Based on these transitions we computed the time constant,
defined as the time when the angular deviation reached 1/e
times the difference between the maximum and minimum
angular deviations for each curve in Fig. 9A. Under this
analysis the value of d that best matched the physiological time
constant of 30 ms (Born et al. 2006) was a delay of d � 24 ms.
We thus fixed d � 24 for the remaining simulations in this
study.

Figure 9B shows the temporal dynamics for the 17 cells that
were tested with both high- and low-contrast stimuli. Although
these data are naturally somewhat noisy, the temporal transi-
tion seen in the high-contrast data is not apparent in the
low-contrast response because the mean angular deviation
remains nearly constant for the duration of the stimulus pre-
sentation. Similar effects are seen in the model (Fig. 9C).

Plaid stimulus

The previous sections showed that end-stopping of the type
found in V1, in combination with a set of motion energy
detectors, is sufficient to account for the responses of MT
neurons to tilted bar stimuli. This suggests that the aperture
problem can be overcome by appropriate spatial filtering at the
level of V1, although it is not clear how such a mechanism
would be effective for stimuli that lack 2D features of the kind
found in tilted bar stimuli. In particular, whereas most MT

neurons accurately encode the motion of tilted bars (Pack and
Born 2001), previous studies have found that as many as 40%
of MT neurons fail to integrate the motion of certain kinds of
plaid stimuli (Movshon et al. 1986) (Fig. 1B). This would seem
to be at odds with the previous findings (Pack and Born 2001)
(Fig. 8C) that the vast majority of MT neurons are capable of
integrating the motion of tilted bar stimuli. This latter result
requires substantial nonlinearities, as indicated by Fig. 3, and
so we were interested to investigate to what extent the same
mechanisms could account for the data on plaid stimuli. We
therefore tested our model with a plaid stimulus composed
of two superimposed gratings that were oriented 120° apart.
For these simulations we added a static nonlinearity (see
METHODS) to the MT output, in that pattern selectivity cannot be
computed for linear combinations of inputs (this follows from
the definition of the pattern index in Eq. 9). The parameters of
the nonlinearity were fixed for all simulations.

MODEL MT RESPONSES WITHOUT END-STOPPING. We first tested
the model with end-stopping disabled, by setting the value of k
in Eq. 5 to 0. Figure 10, A and B shows the tuning curves
corresponding to the model response to the grating and plaid
stimuli. Not surprisingly, the output is clearly component-
selective, as indicated by the bilobed tuning curve in response
to the plaid stimulus (Fig. 10B).

Previous work has suggested that pattern selectivity should
depend in part on the width of direction tuning curves in
response to gratings (Rust et al. 2006; Tinsley et al. 2003). In
particular, one might expect neurons with broader direction
tuning to be more pattern-selective, since broad tuning would
allow them to simultaneously respond to both grating compo-
nents. In our model the input to MT comes from V1 neurons
that share a single preferred direction and so the direction
tuning of the input from the V1 motion energy detectors is
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quite narrow (Fig. 3). To examine the importance of direction
tuning bandwidth on pattern selectivity, we extended the model
to include input from V1 neurons tuned to 12 different direc-
tions of motion, spaced evenly around a circle. The outputs of
each V1 cell were then weighted with a Gaussian profile
centered on the preferred direction of the MT neuron, with the
integration stage of the model being identical to that used in the
previous simulations. Figure 11 (dotted line) shows the result-

ing pattern index as the SD of the Gaussian weighting function
is varied from 5 to 85°. Larger values of the pattern index
correspond to tuning curves that are more similar to the
prediction of pattern selectivity; lower values are more consis-
tent with component selectivity. Although this index increases
with increasing bandwidth, the model neuron fails to be pat-
tern-selective at the criterion level of 1.28 (dashed line) for any
bandwidth.

MODEL MT RESPONSES WITH END-STOPPING. We next performed
the same simulations with end-stopping activated and the
pattern index (solid line) as well as the corresponding tunings
curves for a component and both an unclassified and a pattern
cell are shown in Fig. 11. For narrow bandwidths of the V1
input (Fig. 10D), the model neuron is component-selective,
suggesting that, in contrast to the results with tilted bars (Fig.
4), end-stopping in combination with SoftMax and the static
nonlinearity is not sufficient to account for motion integration
for plaid stimuli. However, when the bandwidth is increased,
pattern selectivity increases, indicating that the MT neurons
that receive strong end-stopped input can be component-selec-
tive or pattern-selective, depending on the range over which
they integrate direction-selective inputs.

This improved pattern selectivity is explained primarily by
the fact that end-stopping broadens the direction tuning at the
level of V1. Indeed the idea that broad direction tuning band-
width (Rust et al. 2006; Tinsley et al. 2003) and nonlinear
normalization at the V1 stage (Rust et al. 2006) are important
for pattern selectivity has been suggested before. However, a
surprising finding of the current work is that these two response
properties can result from a single mechanism. As shown in
Fig. 4, end-stopping increases the bandwidth of direction
tuning in V1 and our results in Figs. 10 and 11 suggest that this
effect is necessary but not sufficient to generate pattern selec-
tivity in MT. Thus a parsimonious account of the results
presented thus far is that all MT neurons receive input from
strongly end-stopped V1 neurons (thus accounting for the
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responses to tilted bars) and that the continuum from compo-
nent to pattern selectivity reflects that variation in direction
tuning bandwidth in the convergent projections from V1
to MT.

NEUROPHYSIOLOGY: MT RESPONSES AT LOW- AND HIGH-STIMULUS

CONTRAST. In the model, pattern selectivity arises through
broad direction tuning in both V1 outputs and MT inputs, with
neither being sufficient on its own to account for the range of
selectivity observed in MT. Whereas the latter property (tuning
bandwidth of the V1 to MT projection) is fixed in the instan-
tiation of the model, the former (tuning bandwidth of V1
responses) varies according to the parameters of the stimulus.
In particular, increased end-stopping leads to increased tuning
bandwidth (Fig. 4) and end-stopping varies with stimulus
contrast (Fig. 7). Thus a straightforward model prediction is
that changes in stimulus contrast should lead to quantitative
changes in pattern selectivity in both component- and pattern-
selective MT neurons.

We tested this idea by comparing the responses of 58 MT
neurons to plaid stimuli at high (100%) and low (5%, n � 18
or 10%, n � 40) contrast. Figure 12A shows the pattern index
(defined in METHODS) for the population of MT cells that were
tested at the two contrasts (blue: 10% low contrast; red: 5%
low contrast). Each point in the figure corresponds to a single
MT neuron and the shift of the population of points below the
main diagonal indicates a general tendency for MT neurons to
become more component-selective at lower stimulus contrasts.
Across the population there was a significant effect of contrast
(two-way ANOVA, no significant interaction, main effect of

contrast P � 0.001) and there is no obvious difference in the
effects of contrast on component- and pattern-selective neu-
rons, suggesting that the reduction in contrast affects a mech-
anism common to all cell types.

The model explanation for the results in Fig. 12A is that low
stimulus contrast leads to reduced surround suppression in V1,
which leads to narrower direction tuning. This is perhaps a
counterintuitive prediction, since tuning for stimulus features is
often thought to be invariant with contrast (Finn et al. 2007; but
for exceptions see Krekelberg et al. 2006; Pack et al. 2005) or
else to become narrower at high contrast due to the recruitment
of inhibitory mechanisms (Sceniak et al. 1999). However, as
shown in Fig. 12B, tuning bandwidth in MT responses to
grating stimuli does indeed increase with contrast (blue: 10%
low contrast; red: 5% low contrast). Here each dot corresponds
to a single MT neuron and the results were significant (two-
way ANOVA, no significant interaction, main effect of con-
trast P � 0.001). Figure 12, C and D shows two example
neurons.

An alternative explanation for the results shown in Fig. 12 is
the “iceberg effect,” whereby tuning bandwidth decreases
more sharply with contrast in those cells that have high spiking
thresholds. To examine this possibility we subtracted the tun-
ing bandwidth measured at low contrast from that obtained at
high contrast for each cell. One prediction of the “iceberg”
model is that tuning bandwidth will decrease more sharply with
decreasing contrast in those cells that have low spontaneous
firing rate because these cells might be assumed to have a high
spiking threshold and thus a minimal iceberg effect. More
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FIG. 12. Effect of contrast on pattern index and tuning
bandwidth. A: pattern index for 58 MT cells at high and low
contrasts. The points lying below the unity line indicate a
tendency to become more component-selective at low con-
trast. B: tuning bandwidth for 133 MT cells in response to
a grating stimulus. The points lying below the unity line
indicate a tendency to become more narrowly tuned at low
contrast. The circled dots correspond to the example neu-
rons in C and D. C: direction tuning curves at high (solid
line) and low (dashed line) contrast for the example neuron
indicated by the large blue circle in B. Black circle indicates
2SDs above the mean of the baseline firing rate. D: as in C,
but for the neuron indicated by the large red circle in B.
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generally, the hypothesis predicts a negative correlation be-
tween the bandwidth differences and the spontaneous firing
rates. Our analysis shows that the results are not correlated
(P � 0.35 for 10%, P � 0.26 for 5%), suggesting that the
narrowing of tuning curves is not due in any straightforward
way to the iceberg effect. This result did not change when we
included only those cells whose responses at nonpreferred
directions (�60° from preferred) were �2SDs above the mean
of the baseline firing rate.

TEMPORAL DYNAMICS IN REAL MT CELLS AND IN THE MODEL. The
temporal dynamics of pattern selectivity is similar to the timing
of the responses observed with titled bar stimuli. That is,
pattern selectivity in MT emerges roughly 60 ms after the
initial component response (Pack et al. 2001; Smith et al.
2005). Figure 13A shows mean temporal dynamics of the plaid
response for the 44 pattern cells depicted in Fig. 12. As in the
previous studies the pattern index for the high-contrast stimu-
lus increases during the early phases of the response before
saturating at around 150 ms. For the low-contrast condition, the
pattern index shows a similar time course, although it fails to
reach statistical significance, as expected from Fig. 12A. Figure
13B shows similar temporal dynamics obtained from the
model. In our model, such dynamic responses are to be ex-
pected because the computation of pattern selectivity relies on
end-stopping, for which we hypothesize a delay at the level of
V1 (Pack et al. 2003).

D I S C U S S I O N

Models of neuronal responses in MT have traditionally
assumed an input stage that approximates the motion energy in
local regions of visual space, velocity space, or frequency
space (Perrone 2004; Rust et al. 2006; Simoncelli and Heeger
1998). The output of this stage is typically normalized and then
summed by a second stage, which weights each input accord-
ing to its selectivity for stimulus features such as spatial
position and spatiotemporal frequency. Our model does not
depart from this basic framework—the main novelty is a
constraint on the way in which the outputs of V1 cells are
normalized. Although this entails a minor structural change to
previous models, we have shown that it allows our model to
account for a wide range of neurophysiological data.

Our approach is similar to that taken by various psychophys-
ical models of motion perception, which often rely heavily on
the unambiguous motion of 2D features (Liden and Pack 1999;
Lorenceau et al. 1993; McDermott et al. 2001; Rubin and
Hochstein 1993; Weiss et al. 2002). In these models the
mechanism by which such features are detected is not speci-

fied, but in the present work we implement this computation
via a straightforward elaboration to the standard motion energy
detector (Adelson and Bergen 1985). Our end-stopped model is
qualitatively consistent with observations on real V1 neurons
(Fig. 7).

Beyond representing a proof of concept for the computa-
tional utility of end-stopping, our model illustrates the more
general point that complex response properties found in the
higher-level visual cortex may in principle be attributable to
computations carried out as early as V1, although it would
clearly have to be elaborated on to account for other receptive
field properties, such as surround suppression in MT. Indeed
previous work has shown that neurons in ventral stream areas
such as V4 are responsive to stimulus features that may be
derived from nonlinear combinations of the features detected
by V1 neurons (Cadieu et al. 2007), suggesting that our approach
may be of general utility in modeling higher-level visual cortex.

Comparison with other models

The idea that end-stopped V1 neurons provide a key source
of input to MT comes from a combination of physiological and
anatomical studies. Physiologically, most macaque V1 cells
exhibit end-stopping to some degree (Jones et al. 2001; Sce-
niak et al. 2001), with the strongest end-stopping being found
in layer 4B (Sceniak et al. 2001), suggesting that the ensemble
of these neurons provides very little information about the
motion of extended edges (see Fig. 4). Understanding the
ramifications of end-stopping for motion processing is thus
particularly important because layer 4B provides roughly 90%
of the input from V1 to MT (Maunsell and van Essen 1983).

In our model we have implemented end-stopping by simply
introducing inhibitory inputs at the ends of the receptive fields
of standard motion energy detectors. We chose this approach
because the motion energy model has been tested quite thor-
oughly and shown to be generally consistent with the behavior
of direction-selective V1 neurons (Emerson et al. 1992; Pack et
al. 2006). Other models of end-stopping rely on the detection
of conjunctions of orientations (Skottun 1998; Zetzsche and
Barth 1990) or curvature (Dobbins et al. 1989). As in our
model end-stopping is instantiated by the multiplication of
oriented filters, although in the previous models the filters
differed in orientation rather than in spatial position. The
model of Noest and van den Berg (1993) used a similar
multiplicative mechanism to account for the perception of plaid
stimuli. Despite the various differences in implementation, we
expect that these other formulations of end-stopping could
provide a suitable front end for our MT model, given that all of
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FIG. 13. A: the average plaid temporal dynamics of 23
MT pattern cells from Fig. 12A. The pattern index (see
METHODS) was computed in 24 ms time bins. At high
contrast (blue), the pattern index switches gradually from
an early, component-selective response to a later pattern-
selective response over a period of roughly 75 ms. The
pattern index transition at low contrast occurs on a similar
timescale, but fails to reach statistical significance. B: same
as A for the model.
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them permit the detection of 2D features (Hubel and Wiesel
1965; Pack et al. 2003).

Our end-stopping model also shares some properties with a
recent model of motion integration in MT (Rust et al. 2006). In
this model the outputs of V1 neurons are normalized based on
the combined output of the V1 population. Importantly, a
“tuned” component of the normalization pool effectively in-
hibits the responses of individual cells in proportion to their
own responses to a given stimulus. This has an effect similar to
that of a compressive nonlinearity, with the resulting increase
in direction-tuning bandwidth leading to greater pattern selec-
tivity. The end-stopping in our model also has tuned normal-
ization because it entails suppressive interactions among cells
tuned to the same stimulus parameters. Indeed end-stopping
increases pattern selectivity in our model simply by broadening
direction-tuning curves at the level of V1 (Fig. 4). However, to
account for the responses of MT neurons to tilted bar stimuli,
we found it necessary to impose the condition that the normal-
ization pool samples preferentially from neurons with specific
receptive field locations. This approach is thus similar to that
typically used in studies of the ventral stream of the visual
cortex (Brincat and Connor 2006), in which the spatial arrange-
ment of receptive field subunits is critically important for
understanding the responses of the neurons to complex stimuli.

A different approach for isolating 2D features comes from
the psychophysical model of Weiss et al. (2002). Here local
velocity measurements are treated as probability distributions,
so that the distribution of velocities associated with a moving
edge is broad relative to that associated with a moving end-
point. Narrow velocity tuning leads to a prominent influence of
2D features in the model’s second stage, which finds the single
velocity consistent with all local measurements (and a prior
that favors low speeds).

A similar velocity-domain approach is the model of Simo-
ncelli and Heeger (1998), which proposes a weighted summa-
tion at the level of MT, followed by normalization, subtractive
inhibition, and an output nonlinearity. In this scenario each MT
neuron integrates over V1 neurons whose selectivities collec-
tively tile the Fourier-domain representation of a particular
velocity. As a result the model neurons are tuned for velocity
in a manner that is invariant with the composition of the
stimulus, provided that the input contains multiple orientations.
This mechanism is compatible with our model and, in fact,
given that end-stopping is essentially a spatial filter that passes
features that contain multiple orientations, the two mechanisms
would be expected to work synergistically (Born and Bradley
2005; Bradley and Goyal 2008). Indeed a selective integration
of one-dimensional features would appear to be necessary for
MT neurons to derive pattern selectivity from the outputs of
neurons, such as those in layer 6 of V1, that lack strong
surround suppression (Sceniak et al. 2001).

The idea that motion detection occurs in parallel with a stage
that is selective to the spatial structure of the input is the basis
of many “feature-tracking” models (e.g., Del Viva and Mor-
rone 1998). Although feature-tracking is often associated with
long-range processes that involve more cognitive aspects of
visual perception (Lu and Sperling 1995), the end-stopping
model performs a similar function using only mechanisms that
are known to exist in V1 (see also Baloch and Grossberg
1997). Thus it would be quite interesting to examine MT
responses in the context of stimuli whose perception has been

attributed to feature-tracking mechanisms (e.g., Beutter et al.
1996; Bowns 1996; Scott-Samuel and Georgeson 1999). For
these stimuli observers appear to determine motion direction
by matching local features across space and time rather than by
calculating velocity or motion energy.

Effects of contrast

We have hypothesized that end-stopping in V1 plays an
important role in shaping the response properties of neurons in
MT and perhaps elsewhere in the extrastriate cortex. Ideally
one would test this idea by silencing intracortical inhibition in
V1 while recording simultaneously in MT. However, this is a
technically demanding experiment that would likely yield
equivocal results (Sillito 1975) and so we have opted for a
much simpler method of manipulating end-stopping. Because
previous studies have shown that reducing contrast reduces
surround suppression in general in V1 (Kapadia et al. 1999;
Sceniak et al. 1999), we were able to use the model to make
predictions about the effects of contrast on motion integration
in MT. Consistent with the model hypothesis, low-contrast
stimuli yielded less motion integration in MT, as manifested by
larger errors in the bar-field experiment (Fig. 8) and reduced
pattern selectivity in the plaid experiment (Fig. 12A).

Of course, manipulating contrast might be expected to alter
other features of neuronal responses throughout the cortex and
thus we cannot say conclusively that our experimental results
must be due to a manipulation of the strength of end-stopping.
However, most of the previously reported effects of contrast on
orientation tuning can be modeled as changes in response gain,
with little effect on stimulus selectivity (Finn et al. 2007). In
our model stimulus contrast can affect both the peak and the
width of tuning curves (Fig. 8) and we have shown that similar
contrast-dependent changes occur in single MT neurons.

Temporal dynamics

In our model the earliest responses to moving stimuli are
similar to those obtained at very low contrast: the responses of
MT neurons are component-selective and heavily biased by
stimulus orientation for tilted bar stimuli. A similar temporal
profile has been observed in real MT neurons, such that the
earliest responses to a moving stimulus fail to signal the motion
of the pattern, with the correct global motion direction being
signaled after a delay of only about 60 ms (Pack and Born
2001). In the case of the tilted bar stimulus, the response
dynamics have been the subject of some debate. Majaj et al.
(2002) suggested that the delay resulted from the longer laten-
cies that are often associated with weaker stimuli in the
responses of neurons in the early visual system (Albrecht
1995). An alternative explanation invokes delays in inhibitory
responses necessary for computations such as normalization
and end-stopping (Lorenceau et al. 1993; Pack et al. 2003).
These delays have been estimated at roughly 10–30 ms (Pack
et al. 2003).

Our model exhibits temporal dynamics that are similar to
those observed in MT (Figs. 9 and 13). This temporal transition
occurs even without any explicit delay in either the latency of
excitatory responses or the inhibitory input responsible for
end-stopping, although a more prolonged and physiologically
accurate transition occurs when an explicit delay is included
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(Fig. 9). In our model the delay related to the computation of
motion direction arises partially from the formulation of the
normalization model, which represents the output of a single
neuron as the ratio of its feedforward input to the summed
input of many other neurons plus a constant. The constant can
be thought of as a threshold below which the response of the
normalization pool is ineffective. Thus after the onset of the
stimulus, the excitatory input rises more quickly than the inhibi-
tory contribution, so that end-stopping is absent in the earliest part
of the response. The same reasoning also explains why surround
effects are ineffective at low contrasts throughout the visual
system (Sceniak et al. 1999; Solomon et al. 2002) and are
typically associated with longer latencies than are responses in the
classical receptive field centers (Cai et al. 1997; Perge et al. 2005).

The delayed inhibition hypothesized in the model may be a
feature of the circuits that generate surround suppression in V1.
In particular, Angelucci et al. (2002) showed that inhibitory
inputs from within V1 are likely driven indirectly by feedback
from extrastriate cortical areas. Although these feedback pro-
jections act on their V1 targets at very short latencies (Girard
et al. 2001; Hupe et al. 2001), they activate slower, horizontal
connections within V1. This interaction between feedback and
horizontal connections may account for the propagation of
surround signals within V1 (Bair et al. 2003).

Conclusion: MT cells and motion integration

In this work we have implemented a model in which MT
neurons integrate the output of V1 motion energy detectors that
are strongly suppressed by oriented inputs that extend outside
their classical receptive fields. One consequence of this end-
stopping property is that the resulting MT model is insensitive
to one-dimensional motion signals that would otherwise lead to
large biases in tuning curves measured in response to tilted bar
stimuli. More surprisingly, perhaps, the same model can ac-
count not only for a number of effects of stimulus contrast, but
also for the temporal dynamics observed in real MT cells.

We also tested our model with plaid stimuli and one inter-
esting conclusion of these simulations is that the model can be
made to span most of the component-pattern continuum
through variations of a single model parameter. Thus there is
not necessarily any functional sense in which pattern cells are
more nonlinear than other types of MT cells and, in our model,
the only important difference between the two was in the
bandwidth of direction tuning at the MT stage. Functionally
one can think of MT direction tuning as a type of smoothing
operation, in which each cell averages the optic flow field
locally over some bandwidth (Qian et al. 1994). Thus pattern
cells smooth the flow field over a broader range of local motion
directions, whereas other MT cells respond more to local
motion vectors, although neither cell type is essential for
solving correspondence problems like the aperture problem.
Indeed in our simulations (Fig. 4) and recordings (Fig. 6), MT
neurons were on average nearly perfect at solving the aperture
problem, provided that local 2D features were present in the
stimulus.

A C K N O W L E D G M E N T S

We thank J. Coursol and C. Hunt for technical assistance.

G R A N T S

This work was supported by Canadian Institutes of Health Research Grant
MOP-79352 to C. C. Pack, National Eye Institute Grant EY-11379 to R. T.
Born, and National Science and Engineering Research Council Fellowship
PGS D3-362469-2008 to J.M.G. Tsui.

D I S C L O S U R E S

No conflicts of interest are declared by the authors.

R E F E R E N C E S

Adelson EH, Bergen JR. Spatiotemporal energy models for the perception of
motion. J Opt Soc Am A 2: 284–299, 1985.

Adelson EH, Movshon JA. Phenomenal coherence of moving visual patterns.
Nature 300: 523–525, 1982.

Albrecht DG. Visual cortex neurons in monkey and cat: effect of contrast on
the spatial and temporal phase transfer functions. Vis Neurosci 12: 1191–
1210, 1995.

Albright TD. Direction and orientation selectivity of neurons in visual area
MT of the macaque. J Neurophysiol 52: 1106–1130, 1984.

Angelucci A, Levitt JB, Walton EJ, Hupe JM, Bullier J, Lund JS. Circuits
for local and global signal integration in primary visual cortex. J Neurosci
22: 8633–8646, 2002.

Baloch AA, Grossberg S. A neural model of high-level motion processing:
line motion and formotion dynamics. Vision Res 37: 3037–3059, 1997.

Beutter BR, Mulligan JB, Stone LS. The barberplaid illusion: plaid motion
is biased by elongated apertures. Vision Res 36: 3061–3075, 1996.

Born RT, Bradley DC. Structure and function of visual area MT. Annu Rev
Neurosci 28: 157–189, 2005.

Born RT, Pack CC, Ponce CR, Yi S. Temporal evolution of two-dimensional
direction signals used to guide eye movements. J Neurophysiol 95: 284–
300, 2006.

Bowns L. Evidence for a feature tracking explanation of why type II plaids
move in the vector sum direction at short durations. Vision Res 36: 3685–
3694, 1996.

Bradley DC, Goyal MS. Velocity computation in the primate visual system.
Nat Rev Neurosci 9: 686–695, 2008.

Brincat SL, Connor CE. Dynamic shape synthesis in posterior inferotemporal
cortex. Neuron 49: 17–24, 2006.

Cadieu C, Kouh M, Pasupathy A, Connor CE, Riesenhuber M, Poggio T.
A model of V4 shape selectivity and invariance. J Neurophysiol 98:
1733–1750, 2007.

Cai D, DeAngelis GC, Freeman RD. Spatiotemporal receptive field organi-
zation in the lateral geniculate nucleus of cats and kittens. J Neurophysiol
78: 1045–1061, 1997.

Carandini M, Heeger DJ, Movshon JA. Linearity and normalization in
simple cells of the macaque primary visual cortex. J Neurosci 17: 8621–
8644, 1997.

Cavanaugh JR, Bair W, Movshon JA. Nature and interaction of signals from
the receptive field center and surround in macaque V1 neurons. J Neuro-
physiol 88: 2530–2546, 2002.

Del Viva MM, Morrone MC. Motion analysis by feature tracking. Vision Res
38: 3633–3653, 1998.

Dobbins A, Zucker SW, Cynader MS. Endstopping and curvature. Vision
Res 29: 1371–1387, 1989.

Emerson RC, Bergen JR, Adelson EH. Directionally selective complex cells
and the computation of motion energy in cat visual cortex. Vision Res 32:
203–218, 1992.

Finn IM, Priebe NJ, Ferster D. The emergence of contrast-invariant orien-
tation tuning in simple cells of cat visual cortex. Neuron 54: 137–152, 2007.

Girard P, Hupe JM, Bullier J. Feedforward and feedback connections
between areas V1 and V2 of the monkey have similar rapid conduction
velocities. J Neurophysiol 85: 1328–1331, 2001.

Heeger DJ. Normalization of cell responses in cat striate cortex. Vis Neurosci
9: 181–197, 1992.

Hubel DH, Wiesel TN. Receptive fields and functional architecture in two
nonstriate visual areas (18 and 19) of the cat. J Neurophysiol 28: 229–289,
1965.

Hupe JM, James AC, Girard P, Lomber SG, Payne BR, Bullier J.
Feedback connections act on the early part of the responses in monkey
visual cortex. J Neurophysiol 85: 134–145, 2001.

Jones HE, Grieve KL, Wang W, Sillito AM. Surround suppression in
primate V1. J Neurophysiol 86: 2011–2028, 2001.

3137ROLE OF V1 SURROUND SUPPRESSION IN MT MOTION INTEGRATION

J Neurophysiol • VOL 103 • JUNE 2010 • www.jn.org

 on June 8, 2010 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org


Kapadia MK, Westheimer G, Gilbert CD. Dynamics of spatial summation
in primary visual cortex of alert monkeys. Proc Natl Acad Sci USA 96:
12073–12078, 1999.

Krekelberg B, van Wezel RJ, Albright TD. Interactions between speed and
contrast tuning in the middle temporal area: implications for the neural code
for speed. J Neurosci 26: 8988–8998, 2006.

Lampl I, Ferster D, Poggio T, Riesenhuber M. Intracellular measurements
of spatial integration and the MAX operation in complex cells of the cat
primary visual cortex. J Neurophysiol 92: 2704–2713, 2004.

Li B, Chen Y, Li BW, Wang LH, Diao YC. Pattern and component motion
selectivity in cortical area PMLS of the cat. Eur J Neurosci 14: 690–700,
2001.

Liden L, Pack C. The role of terminators and occlusion cues in motion
integration and segmentation: a neural network model. Vision Res 39:
3301–3320, 1999.

Livingstone MS, Pack CC, Born RT. Two-dimensional substructure of MT
receptive fields. Neuron 30: 781–793, 2001.

Lorenceau J, Shiffrar M, Wells N, Castet E. Different motion sensitive units
are involved in recovering the direction of moving lines. Vision Res 33:
1207–1217, 1993.

Lu ZL, Sperling G. Attention-generated apparent motion. Nature 377: 237–
239, 1995.

Majaj N, Smith MA, Kohn A, Bair W, Movshon JA. A role for terminators
in motion processing by macaque MT neurons? (Abstract). J Vis 2: 415,
2002.

Maunsell JH, van Essen DC. The connections of the middle temporal visual
area (MT) and their relationship to a cortical hierarchy in the macaque
monkey. J Neurosci 3: 2563–2586, 1983.

McDermott J, Weiss Y, Adelson EH. Beyond junctions: nonlocal form
constraints on motion interpretation. Perception 30: 905–923, 2001.

Movshon JA, Adelson EH, Gizzi MS, Newsome WT. The analysis of
moving visual patterns. Exp Brain Res Suppl 11: 117–151, 1986.

Noest AJ, van den Berg AV. The role of early mechanisms in motion
transparency and coherence. Spat Vis 7: 125–147, 1993.

Pack CC, Berezovskii VK, Born RT. Dynamic properties of neurons in
cortical area MT in alert and anaesthetized macaque monkeys. Nature 414:
905–908, 2001.

Pack CC, Born RT. Temporal dynamics of a neural solution to the aperture
problem in visual area MT of macaque brain. Nature 409: 1040–1042, 2001.

Pack CC, Conway BR, Born RT, Livingstone MS. Spatiotemporal structure
of nonlinear subunits in macaque visual cortex. J Neurosci 26: 893–907,
2006.

Pack CC, Gartland AJ, Born RT. Integration of contour and terminator
signals in visual area MT of alert macaque. J Neurosci 24: 3268–3280,
2004.

Pack CC, Hunter JN, Born RT. Contrast dependence of suppressive influ-
ences in cortical area MT of alert macaque. J Neurophysiol 93: 1809–1815,
2005.

Pack CC, Livingstone MS, Duffy KR, Born RT. End-stopping and the
aperture problem: two-dimensional motion signals in macaque V1. Neuron
39: 671–680, 2003.

Perge JA, Borghuis BG, Bours RJ, Lankheet MJ, van Wezel RJ. Dynamics
of directional selectivity in MT receptive field centre and surround. Eur J
Neurosci 22: 2049–2058, 2005.

Perrone JA. A visual motion sensor based on the properties of V1 and MT
neurons. Vision Res 44: 1733–1755, 2004.

Qian N, Andersen RA, Adelson EH. Transparent motion perception as
detection of unbalanced motion signals. III. Modeling. J Neurosci 14:
7381–7392, 1994.

Riesenhuber M, Poggio T. Hierarchical models of object recognition in
cortex. Nat Neurosci 2: 1019–1025, 1999.

Rubin N, Hochstein S. Isolating the effect of one-dimensional motion signals
on the perceived direction of moving two-dimensional objects. Vision Res
33: 1385–1396, 1993.

Rust NC, Mante V, Simoncelli EP, Movshon JA. How MT cells analyze the
motion of visual patterns. Nat Neurosci 9: 1421–1431, 2006.

Sceniak MP, Hawken MJ, Shapley R. Visual spatial characterization of
macaque V1 neurons. J Neurophysiol 85: 1873–1887, 2001.

Sceniak MP, Ringach DL, Hawken MJ, Shapley R. Contrast’s effect on
spatial summation by macaque V1 neurons. Nat Neurosci 2: 733–739, 1999.

Scott-Samuel NE, Georgeson MA. Feature matching and segmentation in
motion perception. Proc Biol Sci 266: 2289–2294, 1999.

Sillito AM. The effectiveness of bicuculline as an antagonist of GABA and
visually evoked inhibition in the cat’s striate cortex. J Physiol 250: 287–304,
1975.

Simoncelli EP, Heeger DJ. A model of neuronal responses in visual area MT.
Vision Res 38: 743–761, 1998.

Skottun BC. A model for end-stopping in the visual cortex. Vision Res 38:
2023–2035, 1998.

Smith MA, Majaj NJ, Movshon JA. Dynamics of motion signaling by
neurons in macaque area MT. Nat Neurosci 8: 220–228, 2005.

Snowden RJ, Treue S, Andersen RA. The response of neurons in areas V1
and MT of the alert rhesus monkey to moving random dot patterns. Exp
Brain Res 88: 389–400, 1992.

Solomon SG, White AJ, Martin PR. Extraclassical receptive field properties
of parvocellular, magnocellular, and koniocellular cells in the primate lateral
geniculate nucleus. J Neurosci 22: 338–349, 2002.

Tinsley CJ, Webb BS, Barraclough NE, Vincent CJ, Parker A, Derrington
AM. The nature of V1 neural responses to 2D moving patterns depends on
receptive-field structure in the marmoset monkey. J Neurophysiol 90:
930–937, 2003.

Ullman S. The interpretation of structure from motion. Proc R Soc Lond B Biol
Sci 203: 405–426, 1979.

van den Berg AV, Noest AJ. Motion transparency and coherence in plaids:
the role of end-stopped cells. Exp Brain Res 96: 519–533, 1993.

Wallach H. On constancy of visual speed. Psychol Rev 46: 541–552, 1939.
Weiss Y, Simoncelli EP, Adelson EH. Motion illusions as optimal percepts.

Nat Neurosci 5: 598–604, 2002.
Zetzsche C, Barth E. Fundamental limits of linear filters in the visual

processing of two-dimensional signals. Vision Res 30: 1111–1117, 1990.

3138 J.M.G. TSUI, J. N. HUNTER, R. T. BORN, AND C. C. PACK

J Neurophysiol • VOL 103 • JUNE 2010 • www.jn.org

 on June 8, 2010 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org

