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ABSTRACT
The detection of regularities in the sensory environment, known as statistical
learning, is an important brain function that has been observed in many
experimental contexts. In these experiments, statistical learning of patterned
sensory stimulation leads to improvements in the speed and/or accuracy with
which subsequent stimuli are recognized. That is, statistical learning facilitates
the transformation of sensory stimuli into motor responses, but the
mechanism by which this occurs is unclear. Statistical learning could improve
the efficiency of sensory processing, or it could bias responses toward
particular outcomes. The distinction is important, as these different
hypotheses imply different functions and different neural substrates for
statistical learning. Here we address this problem by studying statistical
learning as a decision-making process, which allows us to leverage the
extensive computational literature on this topic. Specifically we describe a
method for applying the Diffusion Decision Model (DDM) to isolate different
sensory and cognitive processes associated with decision-making. The results
indicate that statistical learning improves performance on a visual learning
task in two distinct ways: by altering the efficiency of sensory processing and
by introducing biases in the decision-making process. By fitting the
parameters of the DDM to data from individual subjects, we find that the
prominence of these two factors differed substantially across the population,
and that these differences were predictive of individual performance on the
psychophysical task. Overall, these results indicate that different cognitive
processes can be recruited by statistical learning, and that the DDM is a
powerful framework for detecting these influences.
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Introduction

Outside of a laboratory setting, individual sensory stimuli do not occur at
random but rather are predictable from the occurrence of other sensory
stimuli. The brain has the ability to identify and assimilate such patterns by
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learning the underlying statistical structure. Such plasticity is called statistical
learning.

Experimentally, statistical learning is typically assessed through tasks in
which subjects make decisions about stimuli that are to varying degrees pre-
dicted by the presence of other stimuli. By learning these associations, sub-
jects have been shown to manifest improvements in accuracy and reaction
times on a number of tasks, including natural and artificial language acqui-
sition (Pelucchi, Hay, & Saffran, 2009; Romberg & Saffran, 2010; Saffran,
Aslin, & Newport, 1996; Saffran, Newport, Aslin, Tunick, & Barrueco, 1997),
spatio-temporal visual familiarization (Bulf, Johnson, & Valenza, 2011; Fiser &
Aslin, 2001, 2002, 2005; Howard, Howard, Dennis, & Kelly, 2008; Kim, Seitz,
Feenstra, & Shams, 2009; Kirkham, Slemmer, & Johnson, 2002; Turk-Browne,
Jungé, & Scholl, 2005; Turk-Browne, Isola, Scholl, & Treat, 2008), auditory fam-
iliarization (Creel, Newport, & Aslin, 2004; Gebhart, Newport, & Aslin, 2009;
Newport & Aslin, 2004) serial reaction time task (Hunt & Aslin, 2001), visual
search (Chun & Jiang, 1998), and categorization (Turk-Browne, Scholl,
Johnson, & Chun, 2010).

Despite the widespread observation of statistical learning, the underlying
mechanisms are a subject of debate. One hypothesis suggests that statistical
learning primarily affects sensory processing, either by guiding the allocation
of attention or by priming specific sensory templates (Altamura, Carver,
Elvevåg, Weinberger, & Coppola, 2014; Chun, 2000; Chun and Jiang, 1998;
Gavornik & Bear, 2014; Meyer & Olson 2011, Meyer, Ramachandran, &
Olson, 2014; Olson, Chun, & Allison, 2001; Roser, Fiser, Aslin, & Gazzaniga,
2011; Summerfield, Trittschuh, Monti, Mesulam, Egner, 2008, Summerfield &
Egner, 2009; Turk-Browne, Scholl, Chun, & Johnson, 2009, Turk-Browne
et al., 2010; Zhao, Al-Aidroos, & Turk-Browne, 2013). An alternative explanation
is that statistical learning creates a decision bias, in the form of a commitment
to a particular outcome. This idea is supported by experiments in which par-
ticipants are cued (Forstmann, Brown, Dutilh, Neumann, & Wagenmakers,
2010; Liston & Stone, 2008) or given specific instructions (Summerfield
et al., 2008; Sterzer, Kleinschmidt, & Rees, 2009), or when the experimenter
manipulates reward or stimulus probability (Chalk, Seitz, & Seriès, 2010;
Voss, Rothermund, & Voss, 2004). The two hypotheses are not mutually exclu-
sive, and it is possible that different tasks engage different mechanisms of
statistical learning.

The interaction of sensory processing and decision biases features promi-
nently in computational models of decision-making, which have long been
fundamental to our understanding of the behaviour of subjects in many psy-
chophysical paradigms (Gold & Shadlen, 2007). These models might therefore
provide insight into the mechanistic basis of statistical learning. We have
therefore studied the effects of statistical learning on behaviour, using an
established model of decision-making: the Diffusion Decision Model (DDM;
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Ratcliff, 1978). The DDM permits inferences about the contributions of sensory
and decision-making mechanisms from the accuracy and reaction time data
that is typically collected during statistical learning experiments.

In this paper, we begin by reviewing the DDM and describing how it can be
applied to the study of statistical learning. We then describe the results of a
psychophysical task that we used to probe statistical learning in human sub-
jects. We then use the DDM to infer the processes responsible for statistical
learning, and show that this approach can account for the performance of
individual subjects and for variation across different subjects. These results
suggest that statistical learning uses mechanisms associated with both
sensory processing and decision-making; that these mechanisms are recruited
differently in different subjects; and that such differential influences can
account for a wide range of behaviour. Overall these results suggest that
the DDM is a powerful mechanism for interpreting data on statistical learning.

Methods

To our knowledge the DDM has not been used previously in the context of
statistical learning, so we include here a brief introduction to the approach.
We then describe our experimental paradigm and the methods for fitting
the resulting data to the parameters of the DDM.

Theoretical basis of decision-making

Decision-making is frequently modelled as a serial process, comprised of
several stages (Gold & Shadlen, 2007). The first stage (leftmost box, Figure 1)
is primarily sensory: its goal is to infer the state of the environment from
noisy stimuli. In this context, the quality or reliability of sensory data are rep-
resented by continuous variables. A second stage (central cloud, Figure 1)

Figure 1. The stages of the decision-making process. A stimulus requires some time, ts, to
be processed. The accumulator integrates sensory information until a threshold, or
decision boundary, is reached. Contextual information can bias the accumulator by
adding an offset toward one response and away from the other. When the decision
boundary is reached, the system commits to a specific motor action. The motor
command requires some time, tm, to be executed.
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involves a decision variable that integrates the sensory information, which
accumulates throughout the deliberation period (Platt & Glimcher, 1999). Con-
textual information about stimuli or rewards can bias the decision-making
process at this stage. A decision rule stops the process once the accumulated
value of the decision variable reaches a certain point. Finally, the outcome of
the decision process is manifested through a motor action (rightmost box,
Figure 1). This model is generally studied in the context of a standard two-
alternative forced choice (2AFC) paradigm, in which the subject chooses one
of two responses on each trial.

According to this model, the 2AFC decision process revolves around the
dynamics of the accumulator (centre cloud in Figure 1). Several examples of
ways in which a change in the properties of the accumulator can influence
decisions are shown in Figure 2. Here the accumulated value of the decision
variable through time is shown as the solid black lines in each panel. The hori-
zontal grey lines correspond to the decision boundaries. Time unfolds from
left to right in each plot. In this context, changes in decision-making are
hypothesized to result from one or more of the following factors:
(1) Change in the drift rate

The drift rate is related to the quantity or quality of sensory information. It
represents the average rate at which the decision variable travels, or drifts,

Figure 2. Effect of the manipulation of individual parameters on decision-making in the
DDM. (A) The rate at which information is integrated is affected by the quantity and
quality of the information. (B) The initial value of the decision variable can be biased
toward one answer by contextual information. (C) The location of the decision boundary
reflects the conservatism of the subject; a closer boundary means that decisions will be
based on less information. (D) The non-decisional time measure the time required for
sensory processing and motor execution and can change due to the complexity of the
motor sequence to be executed.
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toward the decision boundary (Figure 2A; Ratcliff, 1978; Voss et al., 2004). Thus
any experimental manipulation that affects sensory stimuli could affect the
drift rate and hence accelerate or delay the time required for the decision vari-
able to reach the decision boundary. When the rate of accumulation is
increased, decisions are generally taken faster and their accuracy is also
improved (Ratcliff, 1978; Voss et al., 2004).
(2) Bias of the decision variable

A second aspect of the decision-making process is a bias in the initial value
of the decision variable (Figure 2B). Under normal conditions, prior to sensory
stimulation, each possible outcome of the decision process is equally prob-
able, and no decision is favoured. However, biases can arise when one
choice is associated with a higher reward (Voss et al., 2004) or when one
choice is more probable (Chalk et al., 2010). This effect of a bias in the decision
variable has the particular characteristic of decreasing the reaction time for
the favoured outcome, while increasing the reaction time for the disfavoured
outcome, resulting in an asymmetric reaction time distribution (Ratcliff &
Rouder, 1998).
(3) Change in the decision boundary

The rule that defines the moment at which the value of the decision vari-
able is committed into an action is typically implemented by the decision
boundary. The decision boundary is a threshold that, once crossed, sets the
end of deliberation period. A change in the decision boundary (Figure 2C)
will result in a change in the reaction time and in the accuracy. If the decision
boundary is closer to the starting point, decisions will be taken faster, but less
time will be allowed for the accumulation of evidence. This, in turn, decreases
the resilience to noise in the system and increases the error rate (Ratcliff &
Rouder, 1998).
(4) Effects on non-decisional time

In addition to the dynamics of the accumulator, there are two other impor-
tant aspects of decision-making. The first is the time required for the infor-
mation to reach the accumulator, and second is the time required for the
execution of the motor command (ts + tm in Figure 1). The time for the infor-
mation to reach the accumulator and the delay incurred by the execution of
the motor command are together referred to as the non-decisional time. A
change in the non-decisional time affects reaction times (Figure 2D), but
has no effect on accuracy (Voss et al., 2004).

The Diffusion Decision Model

The DDM is a specific instance of the framework shown in Figures 1 and 2. The
key assumption is that the observer represents a decision variable that is
driven by sensory evidence toward two boundaries, each one corresponding
to one of the two possible outcomes. At the beginning of a trial, the value of
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the decision variable is set to be somewhere in between the two boundaries, a
and 0. This is the starting point, z. Once the stimulus is made available, infor-
mation is integrated and moves the value of the decision variable until it
reaches one of the two boundaries. Once a boundary has been crossed, the
decision is made. The average speed at which the decision value varies is
the drift rate, v, and it depends on the quality of the information. The variable
t0 is the non-decisional time. A schematic of the model dynamics is shown in
Figure 3, and the relevant parameters are listed in Table 1.

Implementation of the DDM usually involves estimation of the means and
inter-trial variances of the drift rate, decision bias and non-decisional time par-
ameters for each subject, along with the mean of the decision boundary, for a
total of seven parameters. The estimation of the mean values aims at extract-
ing the average behaviour, while the inter-trial variance aims at taking into
account the variance in behaviour across trials. Additionally, the DDM has

Figure 3. The Diffusion Decision Model proposes that the decision-making process
behaves as a random walk process. At the beginning of each trial, the value of the
decision variable is sampled from the uniform distribution, centred on the starting pos-
ition, U(z − sz, z + sz). The decision variable then drifts, following a Brownian motion,
mean rate of v, sampled from a normal distribution N(v, sv). This continues until one
of the two boundaries {a, 0} is reached. Each boundary is associated with one of the
choices of the two-alternate-forced-choice paradigm {top, correct; bottom, incorrect},
and the reaction time for that trial is determined by summing the decision time and
the non-decision time, which sums up sensory (ts) and execution latencies (tm). It is
the inherent noise in the system that explains errors in decision-making, but a bias in
the starting position, change in the drift rate or decision boundaries all affect the
system’s resilience to noise.
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an eighth parameter, the intra-trial drift rate variance, which acts as a scaling
parameter; for simplicity we set it to 0.1 (Voss, Nagler, & Lerche, 2013).

A key motivation for this study is that the parameters in the DDM corre-
spond to potential mechanisms by which statistical learning might influence
behaviour. Previous studies have shown that statistical learning improves
behaviour, but in the context of the DDM, this could be associated with
different parameters. Influences on information processing efficiency would
manifest as an increase of the drift rate, v, while decision biases might displace
the starting point, z, in favour of the most likely outcome. As detailed below,
these parameters can be estimated for individual subjects, based on data of
the kind typically recorded in experiments on statistical learning. We therefore
collected new data in a 2AFC experiment aimed at inducing statistical
learning.

Experimental paradigm

Participants
Fifty-four subjects were recruited from McGill University classified ads (33
women and 21 men) to participate in this study. Subjects ranged in age
from 18 to 63 (mean 24.15 years), and all subjects reported normal or
corrected-to-normal vision. The experimental protocol was approved by the
IRB of the MNI, and all subjects gave informed consent prior to starting the
experiments. Subjects were given 12 CAD for their participation.

Visual stimuli and procedure
Visual stimuli consisted of images of birds and cars, taken from the internet. All
images were chosen to be larger than needed, to be of square ratio, and to
represent only one car or one bird in focus. Images were then downscaled
to a size of 256 × 256 pixels and transformed from colour to greyscale. The
spatial frequencies, contrast and luminance were matched across all images
using the SHINE toolbox (Willenbockel et al., 2010). A total of 16 images
were preprocessed this way, eight of them representing a car and the remain-
ing eight representing a bird. For a given session, however, only six images of

Table 1. Parameters of the Diffusion Decision Model.
Parameter Description

A Location of the top boundary to the decision variable
V Mean drift rate applied on the decision variable
Z Starting point, normalized to the value of a. A value of 0.5 indicates a starting position

halfway between the two boundaries and hence a lack of bias
t0 Non-decisional response time
sv Inter-trial drift rate variance
sz Inter-trial starting point variance
st Inter-trial non-decisional time variance
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each class were needed. A subset of 12 images was then randomly selected,
from the complete set, for each participant.

In pilot analysis we found that the DDM was better constrained when the
subjects made a sizeable number of errors during the experiments. We there-
fore blurred the images by manipulating the phase coherence, using the
weighted mean phase method (Dakin, Hess, Ledgeway, & Achtman, 2002).
For each trial a phase coherence value was sampled from a normal distri-
bution and then used to blur the image. During the first 120 trials of a
session, the phase coherence was progressively reduced, following a linear
trend, from 65 ± 2.5% to 32.5 ± 2.5%. This allowed the participants to learn
the images and to adjust to the level of difficulty of the perceptual task.
The average phase coherence then remained at 32.5% for the rest of the
session. Example images are shown in Figure 4B.

Images were presented on a CRT monitor (Hewlett Packard, A7217A) with a
refresh rate of 70 Hz and a resolution of 1280 × 1024 pixels. Subjects viewed
each image binocularly at a distance of 60 cm, while head position was stabil-
ized with a chin rest. The stimuli were displayed using the Psychtoolbox (Brai-
nard, 1997; Kleiner et al., 2007; Pelli, 1997), and the entire experiment was
programmed in Matlab (MathWorks, USA).

Each session was comprised of a series of trials, each of which consisted of
the presentation of a single image followed by the subject’s response. Each
image was taken from the selected set composed of six unique car images
and six unique bird images. The images were centred on the screen and
spanned eight degrees of visual angle. At the beginning of the trial, the
image was shown for 500 milliseconds, and the subject had an additional
800 milliseconds, during which the image was hidden, to identify the corre-
sponding category (bird or car; Figure 4A). Subjects were asked to answer
as accurately as possible, but within the allowed timeframe. The response
was given by pressing a button on a corded numeric keypad (Targus
AKP10EU, Canada). Reaction times were recorded using the performance
timer available in Matlab (MathWorks, USA).

The association between the keys and the classes (bird and car) was
counterbalanced across participants. If, by the end of the prescribed
delay, no answer had been provided, a message was displayed on the
screen informing the participant that no answer was recorded. In addition,
a two second penalty was added following each non-response. Participants
were informed, prior to the experiment, that if they saw the non-response
message, they should slightly increase their speed to prevent it from hap-
pening again. On average, the number of trials that ended with no
answer for a participant represented less than 1% of the total number of
trials. When a trial was completed and an answer had been provided
within the instructed time limit, an inter-trial delay of 100 ms was inserted
before the onset of the next trial.
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Figure 4. (A) Single trial timeline. The image is shown in the centre of the screen for 500
ms. The image is then hidden, but the subject has an additional 800 ms to indicate the
category (bird or car) to which the image belongs. At the end of a trial, a 100 ms delay is
added before the onset of the next trial. (B) Samples of images, with 32.5% phase coher-
ence. It should be noted, however, that on a computer screen and in a dark environment,
images are easier to distinguish than it might appear to the reader. Images on the left
represent birds, and images on the right represent cars. (C) Statistical structure of the
trial sequence. Unpaired images (1 and 2) are not associated with any other image;
they neither predict nor are predicted. Images 3 and 4 are lead images. They predict
what the next trial will be. These are followed by trail images (5 and 6), which are
fully predicted by the corresponding leads. The capital letters in the boxes indicate
whether the picture is a car or a bird, while the numbers index the image out of the
full set of 12 images. Shown here is the statistical structure for only half of the
images. The full set is merely a duplication of this summarized example. (D) A sample
of the structured stream of trials is shown. It is generated by placing groups of elements
1 to 4 in a random sequence, while making sure that none is repeated twice. The
numbers are then replaced by the images that correspond to them. Thus 1 becomes
image 1A, 3 becomes images 3A and 6B and so on.
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The sequence of images during the first 120 trials was completely random,
with the limitation that an image could not be shown twice in a row. During
this initial period, the experimenter stayed with the subject to provide any
clarification about the task. During this same initial period, the task difficulty
was progressively increased through the manipulation of the average image
phase coherence. Unbeknown to the participant, the next 1200 trials were
ordered according to a statistical rule.

The statistical structure of the experiment involved grouping eight of the
12 images into pairs. The two images of a pair were always presented accord-
ing to the same sequence. To balance the order in which categories were pre-
sented, two of the pairs had a car preceding a bird and the other two had a
bird preceding a car (Figure 4C). Because the first element of the pair always
came first in the sequence, we called it the lead,while the second element was
termed the trail. The four images remaining were called unpaired images.

As a result of this statistical structure, there were three types of trials in the
experiment: four of the 12 possible trials were lead trials; four were trail trials;
and four were unpaired. Accordingly, each type of trial had a different statisti-
cal property: the lead trials were predictive of the next trial; the trail trials were
predicted by the previous trial, and the unpaired trials did not predict nor
were predicted by any other trial. Thus the trail trials served as a probe of stat-
istical learning, while the unpaired trials served as a baseline. The sequence of
trials was generated randomly; an example sequence is shown in Figure 4D.

Each trial could conclude with one of the following outcomes: correct, if the
answer provided corresponded to the category of the image that had been
presented; incorrect, if the answer did not match the stimulus; and failed, if
no answer was provided. Failed trials were dropped from the dataset.

After the experiment, the subjects were asked two questions, in the follow-
ing order: (1) Did you notice any patterns during the experiment? If yes, elab-
orate. (2) What do you think this experiment was about? The first question was
aimed at assessing that statistical learning had taken place implicitly. The
second question was to identify subjects who might be familiar with statistical
learning or who might have adjusted their strategy based on knowledge of
some aspect of the experimental psychology literature. No subject reported
awareness of non-random structure in the image sequences, nor did they
report having employed an overt, predictive strategy.

Model-based analysis of experimental data

Data pre-processing
Before implementing the DDM-based analysis of our data, we performed a
few pre-processing steps. We removed outliers from the dataset, using
standard methods described elsewhere (Ratcliff & Tuerlinckx, 2002;
Vandekerckhove & Tuerlinckx, 2007; Voss et al., 2013). Accordingly, we
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removed any trials that had a response time below a reasonable time (150
milliseconds), along with trials in which reaction times were three standard
deviations above the mean. On average about 1.5% of the trials were
removed this way.

Because we were interested in investigating the steady state of statistical
learning, we dropped the first 400 trials (∼8 minutes of exposure). This
decision followed an analysis of the dynamics, which revealed that, on
average, statistical learning effects were stationary after roughly 400 trials
(Suppl. figure 1). The remaining trials were merged according to their type:
lead, trail and unpaired. Data from car and bird trials were not different in
any obvious way, and so they were combined. This left us with three sets of
trials per participant, corresponding to the three types of images in our
experiment.

Model analyses
The goal of our analysis was to infer the parameters that best accounted for
the behavioural data from each individual subject. Specifically, we asked
which parameters of the DDM best accounted for the empirical cumulative
distributions of reaction times recorded during the experiments.

As mentioned above, the DDM is defined by four parameters that capture
the average behaviour of the participant over all trials and three parameters
that account for variation in the behaviour across trials (Voss et al., 2013).
To determine the values of these parameters that best fitted a given
dataset, we employed fast-dm (Voss et al., 2004), a programme designed for
that purpose. We configured the software to rely on the chi-square criterion
to measure the quality of the fit. We inferred the value of each of the par-
ameters independently for each of the participants and each image type.
Therefore, we fitted a total of 162 independent models (54 participants x 3
image types), as is commonly done in similar studies (Voss et al., 2004). We
then examined the average parameter values across participants and across
image types.

Results

In this section we describe the behavioural effects of statistical learning on
accuracy and reaction time. We then perform a model-based analysis, using
the DDM to isolate parameters that are most strongly correlated with vari-
ations in these behavioural metrics. This allows us to relate our data to specific
hypotheses about statistical learning: For example, effects of learning on
sensory processing could be manifested as a change in the DDM drift rate
v, while effect on decision biases could be more associated with changes in
the starting point z. Effects on other parameters, such as the decision
threshold, would also be captured by our analysis.
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Overview of psychophysical data

Figure 5A compares mean accuracy on trail and unpaired images (See
Methods). Here each point corresponds to one participant, and the tendency
for accuracy to be greater for the trail trials indicates the occurrence of stat-
istical learning. This will be examined further in the next section, but the
data also reveal an unexpected result: overall performance was bimodally dis-
tributed across subjects. This was particularly evident when the data were pro-
jected along the diagonal of the scatterplot (Figure 5A bimodality coefficient:

Figure 5. (A) Scatter plot showing accuracy for trail trials vs. accuracy for unpaired trials.
Each point represents a single subject’s average response (+s and Os indicate member-
ship in the high- and low-accuracy groups). The inset shows a histogram of the same data
projected onto an axis oriented at 45° and the boundary used as criterion to split the
population into two groups. (B) Summary of accuracy (left) and reaction time (right)
data for the high-accuracy (HA) and low-accuracy (LA) groups.
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b > 0.555; SAS Institute, 1989). The bimodal distribution of performance was
not related to age (t-test, p = 0.61, sup. table 1) or to gender (z-test, p = 0.40,
sup. table 2), and it was largely independent of statistical learning.

To facilitate further analysis, we split the population into two groups by
tracing a boundary at the location of the minimum bin count situated in
between the two modes, as illustrated in Figure 5A. One group (labelled
with + s in Figure 1, N = 27) had very high accuracy for both types of
images, while the second group (labelled with Os in Figure 1, N = 27) had
lower accuracy. Mean accuracy for the first group was 90%, while that for
the low-accuracy group was 75% (two-sample t-test, t(52) = 14.19, p < .0001).

The variation in accuracy could reflect different response strategies used by
the two groups. In particular, the high-accuracy group could have used a more
conservative approach in which they sacrificed reaction time for accuracy.
Contrary to this idea, the data show that the high-accuracy group actually
exhibited lower reaction times for correct answers (mean = 523 vs. 545 ms,
two-sample t-test, t(52) = 1. 32, p < .2; Figure 5B). These results indicate that
the disparity between the two groups is not due to a different speed–accuracy
trade-off.

Psychophysical measures of statistical learning

The effects of statistical learning were evident in both groups. For the high-
accuracy group, the responses to the trail images were, on average, 3.2%
more accurate than those to the unpaired images (paired t-test, t(26) = 3.99,
p < .001; Table 2 and Figure 6A, left). Similarly, for the low-accuracy group, per-
formance for the trail trials was 3.9% more accurate than for the unpaired
images (paired t-test, t(26) = 4.10, p < .001; Table 2 and Figure 6A, right).

We also observed effects of statistical learning on reaction times. For the
high-accuracy group, correct answers for the trail images were delivered
10 ms faster than those for the unpaired images (paired t-test, t(26) = 3.31, p
< .01). Interestingly, subjects in this group typically gave incorrect answers to

Table 2. Summary of psychophysics results depicted in Figure 6.
Accuracy RT (correct) RT (incorrect)

Group High Accuracy (N = 27)
Unpaired 0.891 ± 0.03 0.526 ± 0.05 0.529 ± 0.05
Lead 0.884 ± 0.04 0.527 ± 0.05 0.533 ± 0.07
Trail *0.923 ± 0.03 *0.516 ± 0.05 *0.551 ± 0.07
Group Low Accuracy (N = 27)
Unpaired 0.744 ± 0.06 0.544 ± 0.06 0.551 ± 0.10
Lead 0.751 ± 0.05 0.545 ± 0.07 0.545 ± 0.09
Trail *0.783 ± 0.06 0.543 ± 0.07 0.552 ± 0.09

*t(26) > 2.05, p < .05, two tailed paired t-test, N = 27 in both groups.
±indicates standard deviation.
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trail trials more slowly than for unpaired trials (delay of 22 ms; paired t-test, t
(26) = 2.65 p < .02; Figure 6B, left). This will be discussed further in the DDM
analysis below. For the low-accuracy group, the reaction times for correct
and incorrect trials did not differ significantly between trail and unpaired
image types (t(26) = 0.17, p > .86 over all image pairs; Figure 6B, right).
Responses to lead images did not exhibit any statistically significant trend
(high-accuracy group: accuracy, t(26) = 0.86, p > .4, reaction time, t(26) = 0.67,
p > .5; accuracy low-accuracy group: t(26) = 0.66, p > .5, reaction time, t(26) =
0.45, p > .65), when compared to the unpaired images for either group.

Diffusion Decision Model

We fit the parameters of the DDM to each participant’s observed distributions
of reaction times for correct and incorrect responses using the fast-dm soft-
ware package (Voss & Voss, 2007). Overall this model provided an excellent

Figure 6. (A) Average accuracy values across the three types of images, with the data on
the left corresponding to the HA group and the data on the right to the LA group. (B)
Average reaction times for correct and incorrect trials for all image types, with the
data on the left corresponding to the HA group and the data on the right to the LA group.
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fit to the data for all of our participants (χ2(200) < 55.6, p > .995). Average par-
ameter values within each accuracy group are listed in Table 3.

We first used the DDM to explore possible parametric differences between
the two accuracy groups. To this end we used data from the unpaired images
to separate inter-group differences from effects on statistical learning. The
results (Table 3) show that the drift rate, v, and the decision boundary, a,
were significantly different between groups (parameter a, paired t-test, t
(52) = 2.20, p < .04; parameter v, paired t-test, t(52) = 5.82, p < .0001). The
difference in the drift rate implies a difference in the ability to extract infor-
mation from the noise in the images. As depicted in Figure 2C, this would
lead to a faster accumulation of information, which is consistent with the
faster reaction times exhibited by these subjects (Figure 5B). The higher
decision boundary indicated by the DDM analysis suggests that high-accuracy
subjects also waited longer to accumulate information before committing to a
response. This accounts for their higher accuracy (Figure 5A). This suggests
that the reaction times for this group could have been even faster, but that
they sacrificed some speed for additional gains in accuracy (Figure 7A).
Thus, the co-variation of drift rate and decision boundary works toward
taking a more informed decision.

We next used the DDM to discern the effects of statistical learning within
each group, by comparing the parameters recovered for the trail images to
those for the unpaired images. Since predicted stimuli were associated with
a higher accuracy, we tested the hypothesis that the drift rate had increased
following statistical learning. The results show that participants in the high-
accuracy group did display a significantly higher drift rate, v (Table 3, one-
tailed paired t-test, t(26) = 1.96, p < .03). We also tested the possibility that
the decision boundary had increased, as this would account for the increased
accuracy following learning. This effect was also observed in the data (Table 3,
one-tailed paired t-test, t(26) = 1.77, p < .05) In other words statistical learning
led to faster accumulation of information, and a slightly higher decision
threshold, as described above to explain intergroup differences. This leads
to higher accuracy for trail images (Figure 6A).

Table 3. Inferred parameters for the Diffusion Decision Model.
Type of trials a v sv z sz t0 st

Group: High Accuracy (N = 27)
Unpaired o0.782 o3.710 1.621 0.515 0.321 0.433 0.177
Lead 0.797 3.413 1.272 0.527 0.302 0.423 0.173
Trail *0.851 *4.111 1.835 *0.549 0.256 0.430 0.160
Group: Low Accuracy (N = 27)
Unpaired o0.708 o2.110 1.417 0.514 0.267 0.452 0.228
Lead 0.748 2.060 1.316 0.494 0.294 0.435 0.200
Trail *0.764 *2.459 1.717 0.513 0.249 0.440 0.208

*p < .05, one tailed paired t-test.
op < .05, two-sample t-test.
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An additional parameter of some importance in these subjects was the
starting point, z, of the decision variable. If this variable were significantly
biased toward the correct answer for the trail images relative to the
unpaired images, it would account for the improved performance following
statistical learning. The results of the analysis confirm this hypothesis (Table
3, one-tailed paired t-test, t(26) = 2.58, p < .01). This result explains a
peculiar feature of the reaction times for trail images, namely that statistical
learning resulted in correct answers being faster and incorrect answers
being slower (Figure 6B). A divergence away from 0.5 for the starting
point parameter is indicative of a decision bias and has the effect of creat-
ing an asymmetry between the reaction times for correct and incorrect
answers (Figure 7B).

For the low-accuracy group, we also found a significantly greater drift rate
(Table 3, one-tailed paired t-test, t(26) = 1.99, p < .05) and decision boundary
(Table 3, one-tailed paired t-test, t(26) = 2.85, p < .005) for the trail images rela-
tive to the unpaired images. In contrast to the high-accuracy group, however,
no change in the starting position was observed (paired t-test, t(26) = 0.06,
p > .95). Thus the effect of statistical learning on the low-accuracy group

Figure 7. Graphical depiction of the effects of statistical learning on DDM parameters.
Black traces show the average path of a correct decision, while the light grey traces
show the path of an incorrect one. (A) The effect of an increase drift rate combined
with a higher decision boundary. The main effect of this is the accumulation of more
information, which improves accuracy. (B) The effect of a starting point bias toward
the correct response. This results in an asymmetric reaction time for correct and incorrect
answers. Correct answers are delivered much faster, but incorrect answers require more
time to reach commitment.
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was manifested in a higher drift rate and a higher decision boundary, but no
involvement of decision bias.

Finally, we tested the possibility that a change in noise levels could account
for the observed effects of statistical learning. These would be manifested as
changes in the inter-trial variance parameters sx, sy, and st. However, we found
that none of these parameters were significantly different across conditions or
groups of subjects (Table 3; paired t-test, high accuracy t(26) < 1.52, p > .14;
low accuracy t(26) < 1.19, p > .24). We also did not find a significant difference
in non-decisional time (Table 3; paired t-test, high accuracy t(26) < 1.04, p > .3;
low accuracy t(26) < 1.67, p > .11).

In summary, the use of the DDM has provided a mechanistic examination
of two common hypotheses in the literature on statistical learning. The first,
that statistical learning affects sensory processing, is supported for all subjects
in our paradigm, as shown by influences on drift rates and decision bound-
aries. The second, a learned decision bias, is clearly evident in subjects that
tend to perform the task well overall. This might be an indication that the stat-
istical learning process can recruit two independent, but complementary,
mechanisms to improve decision-making. We will detail the cognitive pro-
cesses and brain regions that are likely to support these effects below.

Discussion

We have examined the ability of a popular decision-making model, the DDM,
to account for psychophysical data on statistical learning. Our results suggest
that, in our experimental paradigm, statistical learning improves the efficiency
of sensory processing. For some subjects it also results in learned biases
toward predictable outcomes. This suggests that statistical learning can
engage different cognitive mechanisms and, more generally, that the DDM
can be used to test quantitative hypotheses about the mechanistic basis of
statistical learning.

Mechanisms supporting the effect on the drift rate

Our model-based analysis suggests that several aspects of the decision-
making process are affected by statistical learning. The first factor corresponds
to an increase in the drift rate, which could be a sign that the efficiency of
sensory processing is improved by statistical learning. The second factor,
the starting point, corresponds to the tendency of subjects to be biased
toward one decision or the other. A third factor, the decision boundary, is gen-
erally associated with a change in the trade-off between speed and accuracy.
We begin here by investigating the mechanisms that could be responsible for
the increase in the drift rate.

The drift rate parameter of the DDM has frequently been associated with
stimulus quality or reliability (Ratcliff, 1978; Voss et al., 2004). Consequently,
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the increase in drift rate parameter could be a sign of an improvement of
sensory processing. The idea that statistical learning could be used to
improve sensory processing via changes in low-level sensory processes has
been suggested previously (Fiser, Berkes, Orbán, & Lengyel, 2010; Orban,
Fiser, Aslin, & Lengyel, 2008; Roser et al., 2011; Turk-Browne, Simon, & Seder-
berg, 2012; Turk-Browne, Isola, Scholl, & Treat, 2008).

Supporting this view, many studies have reported an effect of statistical
learning on neural activity in sensory brain areas. Meyer and Olson (2011;
Meyer et al., 2014) presented monkeys with repeated pairings of the same
visual images, such that the second stimulus in the pair was predicted by
the first. Following long-term exposure to these stimulus pairings, inferotem-
poral neuron responses to the second stimulus were lower when it was pre-
ceded by the first stimulus than when it was presented in isolation. Similarly,
recent imaging studies have identified, in early visual areas, BOLD signal cor-
relates of statistical learning (Turk-Browne et al., 2010, 2009). Thus participants
in our study might have used statistical information to filter the noisy images
we presented to them and to extract meaningful information with more
efficiency.

An alternative interpretation, which does not contradict the previous one,
is that statistical learning could affect the distribution of attentional resources
(Turk-Browne et al., 2012). Attention has already been suggested to increase
the drift rate in a different context (Summerfield & Egner, 2009). Regularities
in the environment are known to spontaneously capture attention (Zhao et al.,
2013), and contextual cuing has been showed to guide visual attention (Chun,
2000). Thus visual attention may have played a role in our paradigm, but we
have not investigated this issue systematically.

Statistical learning is also known to operate at the level of categorical
knowledge (Brady & Oliva, 2008) and to affect the representation of stimuli
in the Medial Temporal Lobe (Schapiro, Kustner, & Turk-Browne, 2012). Thus
our use of stimuli that could be labelled at the superordinate level might
have lead subjects to recruit other brain areas that are less involved in
visual stimulus processing. Future investigations could be aimed at differen-
tiating and quantifying the relative contribution of each of these factors to
the change in drift rate.

Mechanisms supporting the effect on the decision bias

Effects on starting position have been documented in tasks in which the par-
ticipants are explicitly biased toward favouring one answer over the other.
This can be done by giving them specific instructions (Summerfield et al.,
2008; Sterzer et al., 2009), cuing them (Forstmann et al., 2010; Liston &
Stone, 2009) or varying stimulus or reward probability (Voss et al., 2004;
Chalk et al., 2010). These experiments generally call for the involvement of
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declarative memory: an explicit and conscious process. In contrast, statistical
learning is an implicit process and there is a debate on whether it can make
use of the mechanisms associated with explicit processes (Reber, 2013).
Recent imaging studies, however, have revealed an overlap between brain
regions that are activated during statistical learning tasks and those that are
activated during explicit memory processing; relevant brain areas include
the medial temporal lobe, hippocampus, striatum and caudate nucleus (Scha-
piro et al., 2012, Schapiro, Gregory, Landau, McCloskey, & Turk-Browne, 2014;
Turk-Browne et al., 2009). The activation of these brain regions is triggered in
anticipation of the predicted item, rather than in response to it, hence the pro-
spective nature of this memory recall. One neural manifestation of this
memory function was found in the lateral intraparietal area, where the
neural activity that preceded stimulus onset was correlated with a bias of
the starting position in a decision-making task (Coe, Tomihara, Matsuzawa,
& Hikosaka, 2002). The use of an implicit prospective memory recall is, thus,
likely to support the decision bias we observed in our experiment.

Mechanisms supporting the effect on the decision boundary

The effect on the decision boundary is likely to be a corollary of the effect on
the drift rate, as it has been observed previously that speed and accuracy
trade off in various tasks (Ratcliff, 1978). Had the drift rate increased, but
the decision boundary remained the same, answers would have been pro-
vided faster, but with only a marginal improvement of accuracy. Given that
our instructions specified that participants should emphasize accuracy, it is
likely that subjects sacrificed the potential gain in reaction time for increased
accuracy, a strategy mediated by an increase of the decision boundary par-
ameter (Ratcliff, 1978).

Dissociation of information processing and implicit prospective
memory

Statistical learning could affect information processing andmemory through a
common mechanism or through independent mechanisms. Our DDM analysis
for the group with higher accuracy revealed an effect on both the drift rate
and decision bias. For the group with lower accuracy, however, there were
no effects of statistical learning on reaction times, nor was there an effect
on the starting point parameter. The latter is typically associated with
memory, as it involves an experience-dependent change in strategy, in
advance of the presentation of a stimulus.

Together, these results show that the effects on sensory processing and
memory can be dissociated. This in turn supports the view that statistical learn-
ing is implemented by a combination of mechanisms, rather than being a
central process with distributed effects. Our observation that sensory
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processing is affected in the absence of memory related processes is an indi-
cation that, in our paradigm, the improvement of sensory processing does
not involve the establishment of memory traces. This interpretation would be
in accordance with the hypothesis that lower stages of sensory processing
are responsible for organizing and amplifying statistically relevant information
before it can be processed by higher stages (Barakat, Seitz, & Shams, 2013;
Conway & Christiansen, 2006; Fiser et al., 2010; Krause & Pack, 2014; Roser
et al., 2011; Tsui, Hunter, Born, & Pack, 2010; Turk-Browne et al., 2008).
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