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by which the brain orchestrates region-

specific dopamine signaling. Just as

importantly, the finding that dopamine

neuron responses track cognitive func-

tion could prove to be valuable for our

understanding of Parkinson’s disease, in

which dopaminergic medications used

for the control of motor symptoms are

sometimes accompanied by cognitive

side effects. Further work delineating

the separate cognitive, motor, and

learning signals in the SNc and VTA

might eventually lead to better treat-

ments that preferentially target dopa-

mine’s role in movement while sparing

patients’ cognitive abilities. Yet much re-

mains to be done. For a long while yet, it

appears, the tiny dopaminergic midbrain
will continue to demand a large body

of work.
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Visual objects tend to be found in predictable combinations (e.g., pens with paper). How does the brain
represent these regularities? In this issue of Neuron, Stansbury et al. (2013) use fMRI to study the brain’s
representation of visual scene categories.
In a 1942 essay, Jorge Luis Borges

discusses the categorization of animals,

purportedly found in a fictitious Chinese

encyclopedia named the ‘‘Celestial

Empire of Benevolent Knowledge’’

(Borges, 1942). Animals therein are

classified into 14 fanciful categories,

including, ‘‘fabulous ones,’’ ‘‘those that

have just broken the flower vase,’’ and

‘‘those that look like flies when viewed

from a distance.’’ Borges uses this

example to suggest that any attempt

to categorize the contents of nature is

‘‘arbitrary and full of conjectures.’’

Nevertheless (again quoting Borges),

‘‘the impossibility of penetrating the

divine scheme of the universe cannot

dissuade us from outlining human

schemes, even though we are aware

that they are provisional.’’ In fact, such

schemes can be quite useful in sensory
neuroscience. A decade after Borges’s

essay, Barlow (1953) discovered neurons

that respond selectively to stimuli that

look like flies when viewed from a dis-

tance. These ‘‘fly detectors’’ were found

in the retinas of frogs and, hence, were

linked to a specific category of behavior

(feeding). Subsequently, Hubel and

Wiesel (1962) identified visual cortical

cells that were described as ‘‘simple’’

and ‘‘complex,’’ and these turned out to

be useful labels for understanding many

aspects of the visual cortex from anatomy

to computation.

More recent imaging studies have led

to the suggestion that neurons with

particular stimulus selectivities are clus-

tered together, forming brain modules

responsible for encoding rather abstract

categories of stimuli, including faces

(Tsao et al., 2006), places (Epstein and
Kanwisher, 1998), and buildings (Hasson

et al., 2003). Of course, the number of

such categories must be far greater than

the number of brain regions, which leads

to the profound question of how the brain

organizes such a vast quantity of visual

experience. In this issue of Neuron,

Stansbury et al. (2013) address this

question.

Stansbury et al. (2013) used fMRI

imaging of human subjects to study the

brain’s representation of visual scene

categories, defined as classes of images

that contain similar co-occurrences of

individual objects. For example, a scene

that contains a building and a car is

more likely to belong to the category

‘‘cityscape’’ than to the category

‘‘nautical.’’ Obviously, one object (e.g.,

a tree) can be found in more than one

scene (e.g., cityscape and rural), and
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Figure 1. Estimating Categories from Natural Images
Human observers derive lists of objects from natural images (left). A generative
model (right) specifies that these lists of objects are generated by weighted
mixtures of features, which, in this case, are categories. The parameters of
the model—the word probabilities corresponding to each category as well
as the category vector corresponding to each image—are learned by the latent
Dirichlet allocation algorithm.
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one scene (e.g., a harbor) can

belong to more than one

scene category (e.g., city-

scape and nautical). Thus,

part of the challenge

of understanding the brain’s

representation of scene cate-

gories is in understanding the

organization of the cate-

gories themselves.

To this end, Stansbury

et al. (2013) have adopted

an elegant approach that de-

fines the scene categories

objectively with an algorithm

that detects the presence of

certain combinations of ob-

jects in a large database

of natural scenes. Impor-

tantly, the algorithm is not

given any prior information

about which categories each

scene belongs to; it defines

categories on the basis of

statistical regularities. This

approach largely circum-
vents Borges’s problem of the arbitrari-

ness of categories, given that the

classification is defined by the images

themselves rather than being imposed

by the person doing the analysis.

In this approach, each scene (Figure 1,

left) was tagged with a list of objects

(e.g., two boats, one car, one person,

etc.; Figure 1, middle) identified by human

observers. These descriptors were fed

to an unsupervised learning algorithm

known as latent Dirichlet allocation

(LDA), which inferred the categories

represented in the data set on the basis

of the pattern of co-occurrences of

objects (Blei et al., 2003).

LDA, which has its root in text classifi-

cation, is one of a number of unsupervised

learning techniques that aim to uncover

structure in complex data. Typically,

they define each example in the data

set—e.g., a list of words, an image, or a

sound—as being generated by a noisy,

weighted mixture of features. Optionally,

they define a set of soft constraints,

or priors, on the distribution of features

and weights. The goal of the learning

algorithm is to find a set of features

and weights that captures the bulk of

the variation in the data set while

respecting the prior assumptions of the

algorithm.
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In LDA, each scene descriptor is

assumed to be generated by a mixture

of categories—the features (Figure 1,

right). LDA assumes that the weights

associated with this mixture (Figure 1,

red arrows) are sparse—each scene con-

tains only a handful of categories. It also

assumes that weights are positive—

whereas a scene may belong to a cate-

gory (positive weight; indicated by a red

arrow in Figure 1) or not (zero weight). It

is not meaningful to say that a scene be-

longs negatively to a category (negative

weight). The ensemble of weights linking

a scene to each scene category is called

the scene’s category vector.

This sparse, positive encoding scheme

allows the algorithm to leverage parts-

based or combinatorial coding (e.g.,

both nautical and cityscape) in order to

describe more narrowly defined scenes

(e.g., harbor; Figure 1, middle). Each cate-

gory is itself a sparse, positive mixture of

objects (Figure 1, right).

These assumptions are embedded

within a hierarchical, probabilistic model;

objects contained within each category

and the categories contained within

each scene are jointly estimated by

Bayesian inference. The resulting cate-

gories contained a high proportion of

related objects. For example, one cate-
sevier Inc.
gory assigned the highest

weights for highway, car,

sky, vehicle, and signpost—

most likely corresponding to

highways or ground transpor-

tation. Furthermore, the

model assigned intuitive cate-

gories to the scenes in the

database, tagging a harbor

scene with nautical and city-

scape categories. This is not

surprising, given that LDA

and its extensions have

proven widely applicable in

an analogous problem, deter-

mining categories from text

documents (Blei et al., 2003).

The LDA approach taken by

Stansbury et al. (2013) has re-

vealed hidden structure in

natural images, but does the

visual system exploit this

structure in its representation

of visual scenes? One way to

answer this question is to

ask whether some aspect of
brain activity correlates systematically

with scene categories during the viewing

of natural images. This would suggest

that the brain encodes the scene cate-

gories in the same way that previous

work has suggested an encoding of faces

or orientations.

To tackle this question, Stansbury et al.

(2013) had subjects view a variety of

different scenes and simultaneously

recorded their brain activity with fMRI.

Then, the authors attempted to predict

the BOLD response in each voxel under

the assumption that the response to a

scene was given by a weighted sum of

the scene’s category vector.

Responses in low-level striate and

extrastriate visual areas, which are sen-

sitive to elementary features such as

orientation and contrast, were poorly

modulated by scene category. However,

responses in anterior visual areas such

as the fusiform face area (FFA) and the

parahippocampal place area (PPA) could

be accurately predicted by the encoding

model. The authors found that the pre-

dictions were most accurate when the

LDA model contained 20 categories and

850 objects, indicating that there is sub-

stantially more categorical information

available at the macroscopic fMRI scale

than previously appreciated.
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Importantly, the number of voxels

significantly predicted by the category-

encoding model was larger than alterna-

tive models relying on elementary visual

features, such as orientation or spatial

frequency. This was a crucial test of the

hypothesis that high-level visual areas

actually represent scene categories

rather than visual stimuli per se (Malach

et al., 1995). Consistent with this idea,

the model was also significantly more

accurate than others that relied only on

the presence of individual objects.

Category preferences in different areas

were, to some degree, consistent with

previous literature. For example, the FFA

showed a relative preference for the

portraits category, whereas the PPA was

most selective for categories that could

be labeled ‘‘places.’’ However, the results

of this analysis indicated a more complex

relationship between brain regions and

category selectivity: voxels in several

anterior visual areas showed selectivity

for other categories. For example, the

FFA was selective for the ‘‘plants’’ cate-

gory in addition to ‘‘portraits.’’ These re-

sults are consistent with earlier results

from the same group, which highlighted

the presence of a distributed representa-

tion of categories with smooth, overlap-

ping gradients of preferred categories

along certain cortical directions (Huth

et al., 2012).

A second way to test the idea that

scene categories are represented in spe-

cific brain regions is to ask whether it is

possible to decode the category viewed

by the observer on the basis of the

BOLD activity alone. This approach is

similar to that used by the same group

to demonstrate how the brain represents

specific images and objects (Naselaris

et al., 2011). The authors found that

BOLD activity successfully predicted the

category membership of individual im-

ages. Importantly, these images were

of novel scenes that were not used to
formulate the encoding model, indicating

that the model generalized beyond the

specific exemplars on which it was

trained.

Then, they used the LDA model to suc-

cessfully predict the objects present in

individual images on the basis of pre-

dicted category membership alone. This

is quite a remarkable result given that

objects are only encoded in the model

indirectly through their correlation with

scene categories. The success of this

decoding approach implies that the dis-

tribution of objects in natural scenes

contains substantial structure and that

this structure can be exploited by the

visual system.

These results might help to explain

previous psychophysical findings that

indicate that, when the gist of a scene is

understood, objects within it can be

recognized accurately even at extremely

low resolutions, in some cases as low

as �6 3 6 pixels (Torralba, 2009). Perfor-

mance in these tasks becomes worse

when objects are isolated from their

context. Similarly, human observers can

detect an object more efficiently when it

is found within a contextually consistent

scene than when it is not (Biederman

et al., 1973). Evidently, the problem of

inferring object identity from low-level

visual features is made much easier by

context. Much like low-level how vision

can make use of prior information to

accurately estimate motion direction

from noisy observations (Weiss et al.,

2002), high-level vision could make use

of learned statistical regularities to

estimate object identity in ambiguous

scenes (Lee and Mumford, 2003).

More generally, the approach devel-

oped by Stansbury et al. (2013) may

provide an objective way to probe

the brain’s representation of abstract

sensory information. Scene categories

are abstract, in that they are largely inde-

pendent of specific image features,
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but could they even be independent of

vision? Would the sounds of traffic and

the smell of baked goods produce the

same activation as pictures of a city

street? Perhaps sensory stimulation is

not necessary at all: could imagining a

specific type of scene produce inter-

pretable activation in the relevant brain

regions? Such representations might

ultimately facilitate the extraction of even

more abstract, perhaps semantic, infor-

mation from brain activity.
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