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Neuronal selectivity results from both excitatory and suppressive inputs to a given neuron. Suppressive influences can often significantly
modulate neuronal responses and impart novel selectivity in the context of behaviorally relevant stimuli. In this work, we use a natural-
istic optic flow stimulus to explore the responses of neurons in the middle temporal area (MT) of the alert macaque monkey; these
responses are interpreted using a hierarchical model that incorporates relevant nonlinear properties of upstream processing in the
primary visual cortex (V1). In this stimulus context, MT neuron responses can be predicted from distinct excitatory and suppressive
components. Excitation is spatially localized and matches the measured preferred direction of each neuron. Suppression is typically
composed of two distinct components: (1) a directionally untuned component, which appears to play the role of surround suppression
and normalization; and (2) a direction-selective component, with comparable tuning width as excitation and a distinct spatial footprint
that is usually partially overlapping with excitation. The direction preference of this direction-tuned suppression varies widely across MT
neurons: approximately one-third have overlapping suppression in the opposite direction as excitation, and many other neurons have
suppression with similar direction preferences to excitation. There is also a population of MT neurons with orthogonally oriented
suppression. We demonstrate that direction-selective suppression can impart selectivity of MT neurons to more complex velocity fields
and that it can be used for improved estimation of the three-dimensional velocity of moving objects. Thus, considering MT neurons in a
complex stimulus context reveals a diverse set of computations likely relevant for visual processing in natural visual contexts.

Introduction
Our ability to perceive natural scenes relies on efficient extrac-
tion of higher-order structure, which permits the decomposi-
tion of the visual scene into objects and surfaces. The
extrastriate cortex of primates is devoted to such higher-order
processing of visual signals (Maunsell and Newsome, 1987;
Orban, 2008). Consequently, characterizing the relationship
between extrastriate cortical activity and complex visual
scenes can reveal a great deal about the neuronal computa-
tions underlying sensory processing. However, such stimuli
often have very high dimensionality and necessarily involve
complicated spatiotemporal correlations, making it difficult
to isolate those potentially complex aspects of the stimulus
that are driving neuronal responses.

One of the most thoroughly studied regions of the extrastriate
cortex is the middle temporal (MT) area. MT is somewhat un-
usual among extrastriate regions in that the vast majority of its

neurons are highly selective within a low-dimensional stimulus
feature space. Specifically, MT neurons are selective for motion,
which in natural vision occurs in the context of optic flow, com-
prising the spatiotemporal stimuli observed during translations
and rotations of objects in the environment relative to the ob-
server. However, most previous explanations of MT stimulus
selectivity have focused on a subset of optic flow patterns that
corresponds to the two-dimensional velocities of objects trans-
lating within a single depth plane (but see Lagae et al., 1994;
Simoncelli and Heeger, 1998; Lisberger and Movshon, 1999; Per-
rone and Thiele, 2001; Rust et al., 2006; Nishimoto and Gallant,
2011). Although this is a very important aspect of MT responses,
such studies implicitly neglect the effect of different velocities at
different positions within the visual field, which is an important
component of optic flow.

There has been much evidence that MT is also selective for
complex motion patterns, given the observation of the powerful
suppressive surrounds (Allman et al., 1985; Born, 2000; Tsui and
Pack, 2011). Previous studies have isolated various aspects of
suppression, including its contrast sensitivity (Pack et al., 2005;
Hunter and Born, 2011), direction tuning (Allman et al., 1985),
and spatial structure (Xiao et al., 1995, 1997), but these experi-
ments have focused on a subset of properties of suppression,
often using highly tailored stimuli. Thus, it has been left unclear
how the multiple forms of suppression combine with excitation
in more natural contexts—in which stimuli driving each element
are related because of the statistics of optic flow—to potentially
result in higher-order selectivity.
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Here, we use a continuously varying optic flow stimulus to
measure the combination of excitation and multiple forms of
suppressive tuning, using a nonlinear modeling approach that
can be fit to the recorded neuronal spike trains. Our analysis
reveals the full spatial and temporal structure of excitatory and
suppressive influences for MT neurons and demonstrates the
diversity of computation in area MT from this perspective. Using
simulations, we show that these nonlinear properties of MT re-
ceptive fields are functionally useful for extracting information
about the three-dimensional velocities of moving objects and
hence directly facilitate additional motion processing in higher
cortical areas (Zemel and Sejnowski, 1998; Mineault et al., 2012).

Materials and Methods
Electrophysiology recordings and behavioral task. Data were recorded from
two adult rhesus macaque monkey (one female and one male, referred to
as M1 and M2 hereafter), prepared using standard surgical techniques
that have been described previously (Mineault et al., 2012). Animals were
trained to fixate within 2° of a small fixation point on a computer mon-
itor in return for a liquid reward. Eye movements were monitored at 500
Hz by an infrared eye tracker (EyeLink II; SR Research). Extracellular
recordings were performed on 102 well-isolated single units in area MT,
which were located using exterior cranial landmarks, anatomical images
from magnetic resonance imaging, and/or physiological properties. Data
were recorded using either single electrodes (n � 63, M1; n � 18, M2) or
a multisite linear electrode array (n � 21, M1). Signals were amplified,
bandpass filtered, sorted online, and resorted offline, using spike-sorting
software (Plexon) to identify single units. All aspects of the experiments
were approved by the Animal Care Committee of the Montreal Neuro-
logical Institute and were conducted in compliance with regulations es-
tablished by the Canadian Council on Animal Care.

Visual stimuli. During isolation of a single MT unit, we measured the
direction tuning, speed tuning, and size tuning of the neuron using
random-dot motion stimuli. We then presented a continuously varying
optic flow stimulus composed of moving dots whose velocity varied over
space as well as time (Mineault et al., 2012). The velocity field was gen-
erated as a random combination of six optic flow components: horizon-
tal/vertical translation, expansion, rotation, and horizontal/vertical
shears. The magnitude of each optic flow components varied indepen-
dently based on low-pass filtered Gaussian noise with a cutoff of 2 or 5
Hz. For the majority of cells (n � 84), the stimulus was displayed in a
slowly moving aperture with a diameter ranging from 8° to 20° (depend-
ing on size of the receptive field), the position of which was determined
by another pair of low-pass filtered Gaussian noise with a cutoff of 0.05–
0.10 Hz, with its mean at the center of the receptive field, and its SD
ranging from 3 to 10°, depending on the size of the receptive field. The
other neurons (n � 18, recorded from monkey M2) used the same optic
flow stimulus, although it remained centered on the receptive field of the
neurons (location estimated from hand-mapping), and there was no
moving aperture; instead, stimuli were displayed either on the full screen
or in a very large static aperture with 30° diameter. The stimuli were
presented on a LCD monitor (Dell 2707WFP) with a display resolution of
1600 � 1000 pixels (49° � 36° of visual field at a distance of 50 cm) and
a refresh frame rate of 60 Hz (n � 73, M1) or 75 Hz (n � 11, M1; n � 18,
M2). There were no notable differences for cells recorded with different
refresh rate. In all cases, the dots were 0.1° in diameter against a black
background. The luminance of white dots was 194 cd/m 2, and the lumi-
nance of black background was 0.2 cd/m 2.

During the experiment, the stimulus was displayed in 6 or 8 min blocks
until the animal stopped behaving or the unit was lost. The stimulus
presented in each block was different, and the data were thus combined
to form a longer continuous stimulus with a median length of �18
min/unit. The stimuli would revisit a given spatial position an average of
36 times. For a subset of recordings (n � 20), we showed a repeated short
segment of the stimulus (5 s) that had its aperture centered on the recep-
tive field of the cell to measure the response reliability and to calculate the
explained variance (R 2) of the model.

Data analyses. The measured spike trains were binned at 25 ms tem-
poral resolution to obtain the observed response rate robs(t). We ex-
cluded data from 100 ms before fixation breaks (when the animal’s gaze
location deviated by �1.5° from the fixation point) to 500 ms after the
recovery of fixation. To avoid any saccade-related effects or transients,
only periods with fixations that were longer than 1 s were used. The total
recording of each neuron was broken into 10 s segments, which were
randomly divided into two groups: (1) 80% of these segments were used
to estimate model parameters (“training set”); and (2) model perfor-
mance was evaluated on the remaining 20% of the data (“cross-
validation set”). The use of cross-validation ensures that the improved
model performance is truly attributable to an increased ability to capture
the relationship between the stimulus and response rather than a ten-
dency to characterize random fluctuations (noise).

Of the 102 units recorded, we excluded eight units for the following
reasons. From monkey M1, two units were excluded because they did not
have a consistent stimulus-dependent response, which meant that a
stimulus-independent “null model” (that only predicted the average fir-
ing rate) outperformed all stimulus-dependent models tested. We also
excluded six units recorded from monkey M2, in which the measured
receptive field did not align with the hand-mapped receptive field center
(�30% of the excitatory weights were within 7.5° of the receptive field
center). Although we did obtain significant model fits for these neurons,
the spatial elements of the model were hard to interpret because the
stimuli were not centered on the receptive field. The remaining 94 units
were included for this study.

Finally, because units recorded from the same electrode often had very
similar relationships between excitation and suppression, we only in-
cluded a single neuron from each multisite electrode experiment (n � 5
of 21) in the figures relating to the overall distribution of MT neuron
properties (see Fig. 5 F, G) to avoid sampling bias.

We also carefully controlled for the effects of fixational eye movements
on the 53 recordings for which there were eye signals of sufficient quality,
including both fixational drift and microsaccades (Martinez-Conde et
al., 2013). The speed of fixational drift was small during fixation (median,
1.515 � 0.090°/s) compared with the typical speed of the stimulus (�20°/
s), which had an undetectably small effect on the neuronal response (data
not shown). Microsaccades were detected using the algorithm proposed
previously (Engbert and Mergenthaler, 2006) and were observed to occur
with a frequency of 1.77 � 0.10 Hz during the experiment. The impact of
microsaccades on the neural response was direction dependent as re-
ported previously (Bair and O’Keefe, 1998). However, we found that this
effect was primarily unrelated to the stimulus-dependent terms of the
model and had no impact on the results presented. As a result, we did not
include these additional analyses here.

Modeling of MT neurons. To understand how MT units respond to
the complex motion stimuli, we developed a hierarchical modeling
framework. We assumed that MT neuron responses are generated by
an inhomogeneous Poisson process with an instantaneous rate r(t).
The log-likelihood of the model is then given by (up to an additive
constant):

LL [robs(t), r(t)] � �t[robs(t)log r(t) � r(t)], (1)

where robs(t) is the measured neuronal response, and r(t) is the model
predicted firing rate (Paninski, 2004).

All models we consider use a fixed spiking nonlinearity F[�] that acts on
the stimulus-dependent terms of the model, which we refer to as the
generating signal g(t),

r(t) � F[g(t) � b], (2)

where b is the spiking threshold, and we choose the spiking nonlinearity
function F[�] to be of the form log[1 � exp(�)]. This functional form resem-
bles a familiar rectified-linear function and additionally facilitates well be-
haved model optimization (Paninski, 2004; McFarland et al., 2013). To
validate the use of this parametric form of F[�], we also measure the spiking
nonlinearity using nonparametric histogram method (Chichilnisky, 2001,
Paninski, 2004). In all cases, we find that the chosen form of nonlinear
function gives a good description of the measured spiking nonlinearity.
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Other nonlinear functions, such as the power law transformation (Nykamp
and Ringach, 2002; Ghose and Bearl, 2010) can fit the measured spiking
nonlinearity equally well (data not shown) but have additional parameters
and are not as well behaved for parameter optimization (Paninski, 2004).

The model acts on the continuously varying optic flow stimulus, which
is described by a local motion speed �(t, x, y) and direction �(t, x, y),
sampled at a spatial resolution of 2°. This local motion signal is first
processed by a set of subunits that are described by a speed-tuning func-
tion fv[�] and a direction-tuning function f�[�]. The subunit output is thus
given by the following:

subunit	t, x, y) � fv[�(t, x, y)] f�[�(t, x, y)]. (3)

To test the idea that primary visual cortex (V1) neurons are detectors of
one-dimensional velocity, we also implemented an alternative formulation
for the subunit, in which velocity was first projected onto the preferred
direction of the subunit before being processed by the subunit nonlinearity:

subunit(t, x, y) � f[�(t, x, y)cos(�(t, x, y) � � pref)]. (4)

This formulation is consistent with the assumptions of various models of
MT (Simoncelli and Heeger, 1998). However, because direction tuning
and speed tuning are entangled in this formulation, the resulting models
were more difficult to fit and interpret. Thus, because we did not find any
significant difference in model prediction for these two formulations, we
used the first subunit model (Eq. 3) for the majority of this work.

The generating signal of the model is computed by integrating the
subunit outputs over space and time. In the motion– opponency model
(MO model), this is given as follows:

gMO	t
 � �
�

kT	�
��
x, y

w	x, y
 subunit	t, x, y
�, (5)

where kT is the temporal kernel, and w is the spatial weighting function.
With a fixed speed-tuning function, the temporal kernel and the spatial
kernel can be efficiently estimated with the GLM framework (Paninski,
2004). The nonlinear speed-tuning function can also be efficiently opti-
mized by expressing it as a linear combination of basis functions fv(x) �
�n�n�n(x), which were chosen to be overlapping tent-basis functions
(Ahrens et al., 2008b; Butts et al., 2011; McFarland et al., 2013). We chose
the center of the tent basis to be equally spaced on a logarithmic scale.

The nonlinear direction-tuning functions can be similarly optimized
by expressing them using the tent-basis functions. However, in practice,
we found that it was more reliable to assume a parametric form for the
direction-tuning functions. To mimic the local motion-opponency
mechanism (Qian and Andersen, 1994), we used the von Mises function
as the direction-tuning function:

f�(�) � exp[b cos(� � �p)], (6)

where �p denotes the preferred direction, and b controls the direction-
tuning width. The cosine function implements local opponency, because a
nonpreferred stimuli will lead to suppressed output. These functions are
always rectified (positive) because of the use of the exponential function.
Speed tuning, direction tuning, spatial weights, and temporal kernels can be
alternatively optimized with an appropriate choice of initial guesses.

For the excitation–suppression model (ES model), the stimulus pro-
cessing is performed separately by excitatory and suppressive compo-
nents, each using their own direction-tuning functions and rectified
spatial weighting functions. Here, the superscripts E and S denote the
excitatory and direction-selective-suppressive (DS-Sup) components,
respectively. The generating signal is then given as follows:

gES	t
 � gE 	t
 	 gS 	t


� �
�

kT
E 	�
�

x, y

wE 	x, y
 fv
E ��	t � �, x, y
� f�

E �� 	t � �, x, y
�

	 �
�

kT
S 	�
�

x, y

wS 	x, y
 fv
S �� 	t � �, x, y
� f�

S �� 	t � �, x, y
�,

(7)

where kT
E and kT

S are the temporal kernels, WE and WS the spatial weight-
ing functions, f v

E[�] and f v
S[�] the speed-tuning functions, and f �

E[�] and
f �

S[�] the direction-tuning functions. For some models, an additional
non-direction-selective suppression (NS-Sup) is included, which takes
the following form:

gNS 	t
 � �
�

kT
NS 	�
�

x, y

wNS 	x, y
 fv
NS ��(t � �, x, y
]. (8)

Because this component lacks a direction-tuning function, its output is
independent of stimulus direction.

This model is thus structured as a multilinear model of functions of the
stimulus (Ahrens et al., 2008a), and each set of parameters can be effi-
ciently optimized while holding the others constant. Because the overall
multilinear optimization procedure can get stuck in local optima, it was
important to choose an appropriate initialization of these parameters for
the optimization procedure. The excitatory component was first opti-
mized as the only model component, and then different types of suppres-
sive components were added to the model to improve its performance.
For the excitatory component, the temporal kernel was initialized to
unity over the range of 50 –150 ms and was zero for all other time lags
based on the typical response latency of MT cells. The direction-tuning
parameter b (Eq. 6) was initialized to be 1, corresponding to an SD of
42.6° for the direction-tuning function (similar to measured tuning
width using random dot patterns; Snowden et al., 1992: 46.5°), and the
speed-tuning function was initialized to be linear over a logarithmic
scale. The direction preference was initialized to be one of eight possible
directions, equally spaced from 0° to 360°. Spatial weighting functions
were optimized for each direction, and the best one was selected for
additional refinement. We then alternatively optimized the direction-
tuning parameters, the temporal kernel, the speed-tuning functions, and
the spatial weights.

Similar procedures were performed when a DS-Sup component was
added to the model: the suppressive direction that could most improve
the model was selected, and then other model components were refined
alternatively. For models with NS-Sup components, NS-Sup was simul-
taneously optimized with the other model components. To determine
which components to include in the model of a given neuron, four sep-
arate models were fit and compared for each cell: models with (1) only
excitation; (2) excitation and DS-Sup; (3) excitation and NS-Sup; and (4)
excitation and both types of suppression. We selected the model with the
best cross-validated performance.

Each component of the model has 225 parameters (15 � 15) for the
spatial weighting function, 40 parameters for the temporal kernel, 10
parameters for the speed-tuning function, and two parameters for the
direction-tuning function (preferred direction and tuning width). There
is an additional parameter for the spiking nonlinearity for each model.
The MO model thus contains 307 parameters, an NS-Sup component
adds an additional 306 parameters, and an NS-Sup component adds an
additional 304 parameters. A model with both DS-Sup and NS-Sup thus
has 917 parameters. Note that such models are well constrained by the
median stimulus duration of 18 min, which corresponds to 43,200 dif-
ferent stimuli at a sampling rate of 25 ms. Note that the evaluation of
model performance using a cross-validation dataset avoids bias toward
models with more parameters.

Because of the complexity of the model, regularization techniques
were used to prevent overfitting. A penalty term was added to the log-
likelihood proportional to the second derivative or the Laplacian of the
temporal kernel and the speed-tuning function, e.g., 
�t�

2kT/� 2� 2.
For the two-dimensional spatial weighting function, we used both
“smoothness” and “sparseness” penalties. The smoothness penalty was
proportional to the sum of the squared slope relative to four nearest
neighbors (up, down, left, and right), and the sparseness penalty was
proportional to the sum of absolute value of the weighting function. The
use of regularization techniques imposes certain prior distributions on
model parameters and reduces the “effective” number of free parameters.
For example, although we used 225 parameters to describe each spatial
weighting function to make it flexible enough, the usage of smoothness
and sparseness regularization ensure that only a small fraction of the
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parameters will be nonzero, and these nonzero weights usually vary
smoothly across space.

Because the temporal kernels and the speed-tuning functions usually
had a stereotyped shape, we used the same regularization parameters for
these functions across all cells. In contrast, the smoothness regularization
parameters were adjusted for each cell and each model component indi-
vidually using a nested cross-validation scheme. Specifically, 20% of the
fitting data were randomly selected and reserved during the optimization
of the spatial weights (note that this was different from the cross-
validation data, which was never used during model estimation). The
regularization parameters that gave best performance on the reserved
data were used for the final fits to the data.

Measurement of the properties of suppressive components. Properties of
the DS-Sup components were analyzed when detectable (n � 62 of 94).
The spatial profiles, direction-tuning strengths, and temporal dynamics
of DS-Sup and NS-Sup components were also compared when both were
detectable (n � 33 of 94).

Following the fitting procedure described above, we investigated our
assumptions about the direction tuning of each component by refitting
the direction-tuning curves using tent-basis functions (Ahrens et al.,
2008b; Butts et al., 2011), which yields a nonparametric estimate of each
direction-tuning function. The direction-tuning strength was then mea-
sured using circular variance (Ringach et al., 2002), defined as Var � 1 
�R�, where R is given by the following:

R �
¥kf� 	�k
ei�k

¥kf� 	�k

, (9)

where �k are the centers of the tent basis, and angles are expressed in
radians. The value of circular variances ranges from 0 to 1, with lower
values indicating tighter clustering around a single mean. A circular vari-
ance close to 1 indicates no direction tuning.

Three indexes were calculated to describe spatial profiles of suppres-
sion. First, we calculated the center of mass of the excitatory weights and
the suppressive weights. The weighted distance between suppression and
excitation was then calculated as follows:

DES � � �
x, y

wS 	 x, y
�	 x � xc
E
2 	 	 y � yc

E
2, (10)

where (xc
E, yc

E) is the center of excitation. This distance reflects how far
suppression is from the receptive field center. A second index was calcu-
lated to reflect the dispersion of suppression:

Dispersion � � �
x, y

wS 	x, y
�	x � xc
S
2 	 	y � yc

S
2, (11)

where (xc
s, yc

s) is the center of suppression. Both indexes were separately
calculated for DS-Sup and NS-Sup components. Finally, an overlap in-
dex was calculated as follows:

Overlap � �
¥xy wE 	x, y
 ws 	x, y


��wE�� ��wS��
. (12)

Note that a minus sign is introduced in Equations 10 –12 because the
suppressive weights ws(x, y) are negative.

The temporal kernel was specified at 25 ms resolution. To more accu-
rately measure the latency of a given model component, we used cubic
spline interpolation with five points around the peak of the temporal
kernel and used the peak of the cubic spline function as the latency of the
component.

Measurement of the selectivity of MT neurons for nontranslational optic
flow. To gauge the selectivity of MT neurons to nontranslational optic
flow, we calculated the correlation coefficient � between each optic flow
component and the neural response. For a given optic flow component,
we computed the difference between the measured correlation coeffi-
cient and that predicted by the model, which reveals how well the models
predicted the actual optic flow selectivity of the neuron.

We also compared the responses of the MO and ES models directly to
optic flow stimuli, in which each model was presented with a randomly

selected combination of optic flow components centered on its receptive
field, and the fraction of nontranslational stimuli was systematically var-
ied from 0 to 1, with 200 random stimulus samples drawn at each level.
For each simulation, we calculated the correlation coefficient between
model outputs and also calculated the correlation coefficient between
model response and the translational optic flow component.

Population decoding simulations. To simulate an MT population re-
sponse to different stimuli, we “cloned” each model fit by replicating it
across space (translating its position) and direction (rotating its spatial
features and direction selectivity). For each of the 33 cells for which both
types of suppression were detected, the MO model and the ES model fits
were shifted on a 5 � 5 grid with spacing of 5° and rotated to include the
antipreferred direction and both perpendicular directions. Therefore, we
generated 25 � 4 � 100 virtual models for each cell. We pooled all virtual
models together to create an entire virtual population of 3300 cells.

We simulated the response of this population to velocity field induced
by 3D motion in different directions. For these simulations, an object
covering the central 20° of the visual field was simulated undergoing 3D
motion in 200 directions sampled from a spherical distribution ran-
domly. For the purposes of the simulation, we assumed that the distance
from the observer to the object was 5 m, and the speed of the object was
uniformly distributed in the range of 0.87 to 2.62 m/s, matching the
speed range we explored with the optic flow stimuli (10 –30°/s). The
spiking threshold of different model types was readjusted to give the same
average firing rate (20 Hz) across all stimulus patterns.

We compared the capacity of an optimal linear decoder to extract
information relevant to behavior, which were the physical parameters of
the stimulus [3D velocity (vx, vy, vz)], given the output of a population of
model MT cells. Specifically, we computed a weight vector w to minimize
the mean squared error between the parameter to decode (e.g., vx) and
the estimated parameter of the decoder Xw, where X is the matrix with
one row for each stimulus and one column for each simulated MT re-
sponse. At each repeat, we randomly selected 200 virtual models from the
entire population or from a subset of the population and evaluated the
reconstruction error as the ratio between the root mean squared error
and the range of the physical parameter. The procedure was repeated 20
times to estimate the error of our evaluation.

Results
To explore the selectivity of MT neurons to complex motion
stimuli, we recorded from single units in area MT during the
presentation of a continuous optic flow stimulus composed of a
random-dot field with the velocity field specified by a random
combination of six optic flow dimensions (Fig. 1A; Mineault et
al., 2012). MT neurons generally responded very reliably to this
stimulus, as demonstrated by the reproducible patterns of spikes
in response to multiple repeats of the same stimulus sequence
(Fig. 1B).

MT neurons are thought to primarily be selective for the di-
rection of motion stimuli in their receptive field (Maunsell and
Van Essen, 1983; Albright, 1984; Mikami et al., 1986), as charac-
terized by their average firing rate as a function of motion direc-
tion (Fig. 1C). Such “first-order” tuning is also reflected in more
complex stimulus contexts, such as during the continuous optic
flow stimulus, which can be demonstrated by fitting a linear
model to explain responses in this context (Fig. 1D; Weber et al.,
2010; Richert et al., 2013). Measurements of tuning in this stim-
ulus context have the added advantage that the optic flow stimu-
lus can reveal more complex aspects of MT tuning, because the
stimulus incorporates different combinations of velocities across
space and time. Indeed, as we show, more accurate models of
stimulus processing are necessary to capture these details.

Hierarchical modeling framework for MT neurons
To interpret the neuronal response in this complex motion con-
text, we adopt a hierarchical modeling framework (Fig. 2A). Re-
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ceptive fields of MT cells are much larger than those at earlier
stages of the visual hierarchy and thus likely reflect aggregated
responses of a large number of V1 neurons. Therefore, we choose
an analysis resolution that gives fine detail for MT spatial recep-

tive fields by dividing them into smaller
subunits, each presumably representing
pooled responses of V1 neurons from that
location. We assume that speed and direc-
tion are separately processed within each
subunit (Hammond and Reck, 1980;
Movshon et al., 1985; Rodman and Al-
bright, 1987), such that subunit output is
given by its direction tuning acting on the
velocity (magnitude and direction) at
each spatial location (Fig. 2B), multiplied
by its speed-tuning function (Fig. 2C).

The output of each subunit is then
integrated across space with a spatial
weighting function (Fig. 2D) and inte-
grated over time with a temporal kernel
(Fig. 2E). Our model assumes the same
direction and speed processing at all rele-
vant positions across space, in part
because we found that relaxing these con-
straints does not improve model predic-
tions (data not shown, but see Discussion).
The final signal after integrating over space
is converted into a spike rate through a spik-
ing nonlinearity (Fig. 2F).

Note that the structure of this model
follows earlier models of MT responses
(Qian et al., 1994), which assumes that the
response of each subunit is enhanced by
the preferred stimulus and suppressed by
the nonpreferred stimulus, followed by a
rectified nonlinearity (Fig. 2B, top). This
is often called “motion opponency,” be-
cause the direction preference of suppres-
sion is always opposite from that of
excitation (Adelson and Bergen, 1985; Si-
moncelli and Heeger, 1998); previous
studies showed that this opponent-
direction suppression is local (Qian and An-
dersen, 1994; Pack et al., 2006). We thus
refer to this model as the MO model.

The parameters of this model struc-
ture can be tractably optimized using
maximum-likelihood estimation meth-
ods, in which parameters representing the
stimulus selectivity of individual subunits,
the spatial weights, and the temporal ker-
nels can be fit to the observed neuronal
response (see Materials and Methods). Al-
ternative formulations of MT processing,
such as ones in which V1 cells only re-
spond to the velocity component pro-
jected onto their preferred velocities
(Movshon et al., 1985), do not substan-
tively change the model performance
(Wilcoxon’s rank-sum test on the cross-
validated likelihood across the population
between models of each type, p � 0.1), but
the resulting model is more difficult to fit

and interpret because speed tuning and direction tuning become
entangled.

In general, the model fitted from data recorded in the context
of complex optic flow stimuli has direction preferences that cor-

Figure 1. Response of MT neurons to continuous optic flow stimuli. A, The naturalistic optic flow stimuli used in this study is
composed of six independently varying optic flow components: horizontal and vertical translation (Trans-X and Trans-Y), expan-
sion rotation, and shear along both axes. Each optic flow component is independently specified by low-passed Gaussian noise
(bottom) and is displayed over a circular aperture that is moving around slowly to explore the spatial profile of the MT receptive
field. The resulting velocity fields explore different types of flow, as shown by four example velocity fields that occur over the 5 s
period shown. While stimulus is displayed at high spatial resolution, the models use the velocity field sampled over a uniform grid
at a resolution of 2°. B, Response of an example MT neuron to the optic flow stimulus shown. The repeated spike responses are
represented in a raster plot (top), with each vertical bar indicating a spike, and the peristimulus time histogram is shown at the
bottom. C, The direction-tuning curve of this example MT neuron, measured as the average firing rate in response to random-dot
motion in the receptive field. D, Spatial kernel of the linear model fit to the continuous optic flow stimuli for the same MT neuron.
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relate with the preferred direction of the neuron measured
using the standard approaches (see Materials and Methods;
Fig. 2H, r � 0.97).

Extension of the hierarchical modeling framework
with suppression
Although the MO model provides a good description of the direc-
tion tuning of the MT neurons (Fig. 2G), it only incorporates a single
form of suppression, which is always spatially localized with excita-
tion and with opposite direction tuning. In contrast, numerous
studies that probed stimulus selectivity with more than one spatially
localized motion component have observed suppression outside the
classical receptive field—in the “surround”—in a majority of MT
neurons (Allman et al., 1985; Xiao et al., 1997; Born, 2000; Tsui and
Pack, 2011). This suggests an extension of the MO model to include
suppression that is not simply colocalized with excitation.

We thus extend the hierarchical framework to model a spatially
distinct suppressive influence (Fig. 3A) in addition to the excitation
described above, comprising what we call the ES model. Motivated
by detailed studies of suppression in V1, in which suppression can
have both an orientation-selective component (Ringach et al., 2002)
and a non-selective component (Sengpiel et al., 1997), we incorpo-
rate both forms of suppression into the ES model: (1) a DS-Sup
component (blue); and (2) an NS-Sup component (green). The DS-
Sup component has a direction-tuning function, which is potentially
distinct from the excitatory direction tuning, whereas the NS-
Sup responds equally to all directions. The excitatory, DS-Sup,
and NS-Sup components are pooled across space and integrated
over time with their own spatial weighting functions and tempo-
ral kernels. The excitatory weights are constrained to be positive
and the suppressive weights (both DS and NS) to be negative. As
a result, the contribution of each is distinct, and simultaneous
optimization of these components is tractable, resulting in a sin-
gle optimal description of the excitatory and suppressive sub-
structure of the MT receptive field of this form.

Across the population of MT neurons, we find that excitation,
DS-Sup, and NS-Sup typically have different spatial profiles and
direction preferences and, in some cases, different temporal dy-
namics. For example, the previously considered neuron (Fig. 2)
has a DS-Sup component with similar direction preference as
excitation (Fig. 3C) but forms an asymmetric surround structure
that is essentially non-overlapping with the excitatory region
(Fig. 3F). Furthermore, there is also a distinct NS-Sup compo-
nent that has spatial weights in two areas: (1) a central area that is
essentially overlapping with the excitatory component; and (2) a
surround component that is farther away from the receptive field
center than the DS-Sup. The temporal kernels of both suppres-
sive components are slightly delayed relative to excitation (Fig.
3D). Although the ES model does not predict a different excit-
atory tuning of the neuron, it has a much better cross-validated
performance than the MO model (Fig. 3E).

To gain additional insight into the degree of model performance
improvement, for a subset of the recorded neurons, we also pre-
sented repeats of a short segment of the stimulus (Fig. 1B), allowing
us to evaluate model performance using both cross-validated log-
likelihood (LLx) and more traditional peristimulus histogram-based
methods, such as explained variance (R2). This analysis reveals that
the models can explain 34.5 � 3.1% of the variance of the response,
comparable with the performance of other models of MT processing
(Nishimoto and Gallant, 2011). Furthermore, the improvement of
model performance after inclusion of suppression is significant us-
ing both metrics and corresponds to a median of 25.3% of explained
variance and 26.2% of LLx (Figs. 4A,B). Moreover, there is a corre-

Figure 2. Analysis of MT neurons with the MO model. A, MO model schematic: motion is first
processed by local subunits with direction and speed-tuning functions (top row) and then is
pooled across space (second row), with the resulting output integrated over time (third row).
Finally, a spiking nonlinearity is applied on this signal to transform it into a firing rate prediction
(bottom row). B–F, The model components for the example MT neuron with SD of the fits
(indicated as gray shaded area) calculated using bootstrapping techniques (100 repeated resa-
mpling with replacement). B, The direction-tuning function for the subunits. The model is fit by
assuming a von Mises function (dashed), which contains a motion-opponency stage, followed
by a rectified nonlinearity (top). This can be validated by nonparametrically fitting the direction
tuning directly (solid), which is in close agreement. C, The speed-tuning function for the sub-
units (solid) compared with the distribution of stimulus speed (shaded gray). D, Spatial weight-
ing function. E, Temporal kernel. F, The measured spiking nonlinearity (dashed) is fit
parametrically (solid), with the distribution of the generating signal indicated in shaded gray. G,
The model has a nearly identical direction-tuning curve (generated through simulation;
dashed) as that of the neuron (solid). H, The model predicted direction preferences are highly
correlated with the measured ones across the population of neurons in the study (r � 0.97, p �
10 49, n � 84).
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lation between log-likelihood and R2 (Fig. 4C), indicating a consis-
tency of the two metrics. Because it provides a much more reliable
metric of model performance in this case and does not require re-
peated stimulus presentations, we will only use cross-validated log-
likelihood to measure accuracy of model predictions in the rest of the
study.

Properties of suppressions in MT
Across the population of cells from which we recorded, the addi-
tion of one or both types of suppression improves model predic-
tion for most of the neurons (81 of 94). For one-third of the
neurons, the best model has both DS-Sup and NS-Sup (33 of 94,
LLx improvement � 14.6 � 3.2%). For the rest of the neurons in
the population, the best model either only has DS-Sup (29 of 94,

LLx improvement � 11.9 � 5.3%) or only has NS-Sup (19 of 94,
LLx improvement � 15.8 � 9.1%). Because a model with more
components requires more data to fit and is more susceptible to
overfitting, the fraction of cells that have both suppressive com-
ponents might be underestimated using our criteria of requiring
better cross-validated likelihood. For the neurons with both
DS-Sup and NS-Sup components, we verified that there was a
significant improvement in model performance over models
with only one suppressive component (Fig. 5A), suggesting
that DS-Sup and NS-Sup are describing different aspects of
neuronal selectivity.

The two forms of suppression thus appear to be distinct con-
tributions to the computation performed by the neuron. To ex-
plore this further, we first tested whether we correctly assumed

Figure 3. Incorporation of suppressive components into the description of MT processing. A, Model schematic for the ES model, with excitation (Exc, red), as well as DS-Sup (blue) and NS-Sup
(green). The DS-Sup component has the same computational structure as the excitatory component but with the spatial weights constrained to be negative. The NS-Sup component is like DS-sup
but does not have a direction-tuning function and thus responds equally to all directions. B, Each component has its own speed-tuning function, but they are all very similar in this case. Note that
the gray lines around each curve show the SD estimated with bootstrapping techniques. The shaded gray area denotes stimulus speed distribution. C, Subsequent unconstrained fits of the
direction-tuning functions for each model component validates the forms used in fitting them, where Exc (red) and DS-Sup (blue) have very similar (antagonistic) tuning and NS-Sup component
(green) is not selective for direction. D, Temporal kernels of Exc (red), DS-Sup (blue), and NS-Sup (green), demonstrating a slight delay of suppressive components. E, The measured spiking
nonlinearity (dashed) and the corresponding parametric fit (solid) relative to the distribution of the generating signal (shaded gray). F, The improvement of cross-validated likelihood of ES models
with each (or both) suppressive components added over the MO model, expressed as a fraction of the performance of the model with both DS-Sup and NS-Sup. G, Spatial footprints of Exc (red),
DS-Sup (blue), and NS-Sup (green). The arrows on the left indicate direction preferences of excitation and DS-Sup. A vertical slice of the weighting function is shown on the right, with the gray lines
indicating the SE of each function over multiple model fits.
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the forms of DS-Sup and NS-Sup tuning
by relaxing constraints on the tuning
functions and fitting these functions using
nonparametric methods directly (see Ma-
terials and Methods). The resulting direc-
tion tuning of the NS-Sup components
are indeed flat in almost every case, re-
flected as a circular variance very close to
unity (Fig. 5B). In contrast, the direction
tuning of DS-Sup fit in the same way has a
circular variance comparable with that of
the excitatory component (Fig. 5B).

The two components also typically
have different spatial profiles (Fig. 3F),
with the spatial weights of NS-Sup usually
located farther from the excitatory center
(Fig. 5D) and with more dispersion than
that of the DS-Sup (Fig. 5E). Both DS-Sup
and NS-Sup temporal integration is sig-
nificantly delayed relative to the excit-
atory components (relative latency of
DS-Sup � 12.6 � 4.0 ms, relative latency
of NS-Sup � 25.5 � 6.9 ms). The latency
of DS-Sup is consistent with previous ob-
servations of MT surrounds (16 � 10 ms;
Perge et al., 2005),

In summary, the NS-Sup shares many
characteristics of the previously described
MT surround (Born and Bradley, 2005;
Hunter and Born, 2011), which is farther from the center, covers
a larger area, and is very broadly tuned and delayed. In contrast,
DS-Sup is more likely to influence stimulus selectivity directly
within or close to the receptive field. However, the different di-
rection selectivity and spatial profiles of DS-Sup and excitation
can lead to local tuning differences in subregions of the receptive
field, seen for example in the study by Richert et al. (2013). Below,
we will thus focus on the properties of MT neurons imparted by
DS-Sup.

Diversity of MT selectivity reflected in DS-Sup
The combination of their excitatory and suppressive influences
can potentially give MT neurons selectivity to complex motion.
To understand such selectivity, we first characterize the relation-
ship between excitation and DS-Sup with two parameters: (1) the
differences of direction preferences; and (2) the overlap extent of
spatial weights (Fig. 5F). Note that here we only consider cells
with DS-Sup detected and only include a single neuron from each
multisite electrode experiment (see Materials and Methods), re-
sulting in a population size of 55. It is most common for MT
neurons to have suppression and excitation with matching tuning
(antagonistic suppression; green), as well as with opposite preference
(opponent suppression; red). Nevertheless, this distribution is con-
tinuous—with no apparent holes—and there are also many cells
with suppression orthogonal to excitation (orthogonal suppression;
blue). However, the distribution also shows a certain degree of di-
versity, especially for cells with orthogonal suppression. To highlight
examples from different parts of this distribution and further inves-
tigate the diversity of the neuronal computation pictured, we divide
cells into three groups based on their position within this two-
dimensional distribution (Fig. 5F). Example model fits for cells in
each group are shown in Figure 6.

Cells with antagonistic suppression represent the majority of
our population (23 of 55). Spatially, DS-Sup has an asymmetric

surround structure around excitation (Fig. 6A). Note that the
lack of observed neurons in the top left corner of Figure 5F,
corresponding to overlapping antagonistic suppression, is likely
attributable to the inability of the model to detect overlapping
suppression that has similar selectivity as excitation, because add-
ing excitation and suppression with identical tuning at the same
position will have no effect on the model output in the stimulus
contexts we studied. In contrast, other studies have observed
overlapping, antagonistic suppression using tailored stimuli
(DeAngelis et al., 1992; Cavanaugh et al., 2002). In most cases,
NS-Sup can also be detected at a farther distance from the center,
suggesting that MT surrounds can be decomposed into a
direction-selective and a more distant non-selective component. In
principle, both suppressive components could contribute to classi-
cally measured “size tuning” (Allman et al., 1985). However, we find
that size tuning is not limited to cells with antagonistic suppression,
and only the strength of NS-Sup is significantly correlated with the
extent of size tuning (r � 0.50, p � 0.05). This is also consistent with
previous reports of broader direction tuning of the surround than
that of the center (Born and Bradley, 2005; Hunter and Born, 2011).
Conversely, the spatial footprint of DS-Sup resembles the asymmet-
ric antagonistic surround seen in other studies (Xiao et al., 1995;
Orban, 2008) and may contribute to selectivity for complex motion
features, such as speed gradients and surface orientation (Xiao et al.,
1997; Gautama and Van Hulle, 2001; Sanada et al., 2012).

Orthogonal suppression is found in a proportion of MT neu-
rons (17 of 55; Fig. 6B). This type of suppression is not as well
documented as the other type of suppressions, presumably be-
cause previous studies of MT surround usually restrict motion in
the same or the opposite direction as the preferred direction. The
spatial footprint of orthogonal DS-Sup is generally very different
from excitation and exhibits a large degree of diversity across
neurons with orthogonal suppression. Usually this suppression is
confined to one side of the receptive field. In addition to image

Figure 4. Model prediction accuracy. A, Fraction of explained variance (R 2) for the MO and ES models (left). Paired comparisons
(right) demonstrate significant improvement: 22.0 � 11.7% ( p � 0.05, Wilcoxon’s signed-rank test). B, Cross-validated likeli-
hood (LLx) for the MO and ES models, showing a similar trend as in A. Percentage improvement is 21.7 � 5.0% ( p � 0.05,
Wilcoxon’s signed-rank test). C, A comparison between the two metrics shows the correlation between them (r � 0.55, p � 0.05).
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discontinuities, this arrangement may
provide selectivity to curvature in the mo-
tion field, which is an important aspect of
natural motion.

Finally, cells with opponent suppres-
sion comprise the rest of MT neurons in
the population in which we detected DS-
Sup (15 of 55). DS-Sup is typically colo-
calized with excitation for these cells (Fig.
6C), resembling the organization of the
motion-opponent subunit we used in the
MO model (Qian et al., 1994; Fig. 2A).
However, the ES model still represents a
different computation from the MO
model because of the rectified nonlinear-
ity in the subunit. As a result, the subunits
will not give any response for nonpre-
ferred stimuli and the MT neuron will re-
spond at its spontaneous level, whereas
for models with opponent suppression,
the neuronal response will be truly sup-
pressed below the baseline for nonpre-
ferred stimuli. Indeed, we can observe this
in the measured direction-tuning curve,
in which we calculated the amount of sup-
pression relative to the baseline firing rate
in the nonpreferred direction. We find
that the amount of suppression below
baseline is significantly larger for cells
with opponent suppression compared
with the rest of the cells in the population
(p � 0.05, Mann–Whitney U test).

Selectivity and coding of complex
optic flow
The diversity of both excitatory and sup-
pressive tuning direction and their spatial
footprints suggest that MT neurons might
be specifically tuned to velocity fields with
different directions of motion at different
spatial locations. Such visual stimuli are
quite common in more natural settings in
which velocity fields are attributable to
motion of the observer and with objects at
different depths. A simple way to reveal
optic flow selectivity is to ask to what ex-
tent the firing rate of the neuron is mod-
ulated by a given flow component, which
we gauge using the correlation coefficient
� between each of the six optic flow com-
ponents and (1) the actual neural re-
sponse, (2) the predicted response of the
MO model, and (3) the predicted re-
sponses of the ES model (i.e., with both
types of suppression). Because MT re-

Figure 5. Properties of the suppressive components. A, Box plots showing the improvement of cross-validated likelihood (LLx)
over the MO model, applied to MT neurons with detectable DS-Sup and NS-Sup components (n � 33). Including only DS-Sup on
average increases the LLx by 12.4% (left); the improvement is 12.1% for a model with only NS-Sup (middle) and 20.7% for a model
with both DS-Sup and NS-Sup (right). B, Circular variance, which measures direction-tuning width, of the direction-tuning curve
for excitation (left), DS-Sup (middle), and NS-Sup (right). DS-Sup has comparable tuning variance as excitation, whereas NS-Sup is
almost completely non-selective to motion direction (circular variance close to 1). *p � 0.05, **p � 10 6 C, Both types of
suppression are delayed relative to excitation, with latency relative to excitation for DS-Sup (left; 12.6�4.0 ms) and NS-Sup (right;
25.5 � 6.9 ms). NS-Sup is further delayed relative to DS-Sup (*p � 0.05, **p � 0.001). D, Average distance from the receptive
field center for DS-Sup (x-axis) and NS-Sup ( y-axis), in units of receptive field size. NS-Sup is farther away from the center than
DS-Sup ( p � 0.001). E, NS-Sup is more dispersed than DS-Sup, as demonstrated by measuring the distance from the centroid of
DS-Sup (x-axis) and NS-Sup ( y-axis) ( p � 0.001). F, The population of MT neurons demonstrates a diversity of relationship
between excitation and suppression, as shown by plotting the direction difference of each neuron between excitation and DS-Sup
(horizontal) and amount of spatial overlap between them (vertical) (n � 55). Each dot shows an individual neuron; although the
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distribution is continuous, we draw color-coded distinctions
to analyze different regimens of tuning (green, antagonis-
tic suppression; blue, orthogonal suppression; red, over-
lapping opponent suppression). Marginal distributions
over direction difference and overlapping extent are
shown at the bottom and the left, respectively.
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sponses are significantly correlated with nontranslational flow
components in many cases, the models with suppressive compo-
nents predicted their correlation with each optic flow component
better than the MO model (Fig. 7A). Therefore, optic flow selec-
tivity in MT relies at least in part on the suppressive influences we
characterized previously.

We can also gauge the effect of adding suppression by com-
paring the responses of MO and ES models fit to the same neu-

ron, as different amounts of nontranslational optic flow are
presented. First, for stimuli that consist of only translation, the
outputs of the MO and ES models are highly correlated (r �
0.91 � 0.06), which is expected because both models can predict
the standard direction-tuning properties of the cell. However, the
correlation between the two models decreases as more nontrans-
lational optic flow is introduced into the stimulus (Fig. 7B).
When the stimulus is composed of only nontranslational compo-
nents, the average correlation coefficient is only 0.67, with an SE
of 0.06. This implies that, as expected, DS-Sup results in different
responses to more complex motion stimuli. Such selectivity to
complex optic flow appears to arise from the DS-Sup component
rather than NS-Sup, because models with excitation and DS-Sup
alone (Fig. 7B, blue) are similar to the full ES models, whereas
models with only excitation and NS-Sup (red) are generally more
correlated to the MO models.

Next we examine which components of the stimulus are most
correlated with the predicted response for models with and with-
out suppression. In general, the MO model outputs are much
more correlated with the translational components than the ES
models (Fig. 7C). The difference is most significant when a mod-
erate amount of complex optic flow is introduced (10 – 40%).
Consistent with Figure 7B, we find that DS-Sup alone is enough
to explain this difference, whereas models with only NS-Sup
mostly resemble behaviors of the MO models. This suggests that
the difference between model predictions is attributable to the
fact that MO models are only selective to translational motion,
whereas the ES models exhibit additional selectivity to more
complex optic flow stimuli. When more complex optic flow is
introduced, both types of models are driven by the nontransla-
tional flow components, but the responses of the two models
generally depend on the stimulus in different ways, as reflected by
the decreased correlation in Figure 7B.

Thus, the suppressive components of the ES model contribute
to selectivity to nontranslation components of optic flow stimuli.
Does such selectivity allow for a better representation of such
stimuli by MT neurons? Previous work has shown that individual
MT neurons exhibit fairly weak tuning for optic flow patterns,
such as expansion and rotation, and that such tuning is highly
dependent on stimulus position (Lagae et al., 1994). Here we ask
whether a population of MT neurons could encode three-
dimensional motion patterns and to what extent this encoding
depended on the presence of nonlinear surround suppression.

To address these points, we applied an optimal linear decod-
ing framework (DiCarlo and Cox, 2007; Mineault et al., 2012) to
recover the velocity of a simulated object moving with different
3D velocities at a specific position relative to the observer (Fig.
8A). This task is also related to decoding egomotion, in which one
typically assumes that the visual scene is static and the observer is
moving. In this case, the “object” is the entire visual for egomo-
tion decoding, because we are not examining the more complex
case of recovering egomotion during simultaneous rotations of
the eyes, head, or body. The results we report here are not sensi-
tive to the size of the object.

For each simulation, we calculate the velocity pattern gener-
ated by 3D object motion in different directions (Fig. 8A,B) and
then simulate a population of MT neuron responses to these
stimuli (see Materials and Methods). An optimal linear decoder is
trained to infer the 3D motion direction based on the simulated
neuronal response using either the MO models or the ES models.
The reconstruction performance of the decoder reflects a lower
bound on the information that would be available for a down-
stream brain area (DiCarlo and Cox, 2007).

Figure 6. Example model fits for different types of tuning. A–C, Example fits are shown for
different types of tuning: A, antagonistic suppression; B, orthogonal suppression; and C, over-
lapping opponent suppression. Each row shows (from left to right) direction preferences of
excitation (Exc, red), DS-Sup (blue) and the measured preferred direction (black), spatial
weights for excitation, DS-Sup, NS-Sup, and overlapping of them.
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The results of this simulation show that decoding perfor-
mance using the ES model responses is significantly greater (i.e.,
less decoding error; Fig. 8C) compared with that using the MO
model, whereas additional incorporation of NS-Sup does not
further improve the performance. Moreover, the decoding
performance depends on properties of suppression: although sig-
nificant improvement is observed if we only use cells with antag-
onistic suppression or orthogonal suppression for the decoding
task, such differences are not observed for cells with opponent
suppression (Fig. 8D). This is likely because spatial offsets be-
tween excitatory and suppressive components may be instru-
mental in creating nontranslational optic flow sensitivity, but
opponent suppression tends to have high degree of overlap with
excitation and thus little spatial offset (Fig. 5F). Note that the
performance of both models significantly degrades when stimuli
are not presented in the center of the receptive field, in marked
contrast to the same decoding task applied in the medial superior
temporal (MST) area (Mineault et al., 2012), suggesting that
computations described in MT represent one element of what is
likely a hierarchical computation. That is, the initial selectivity
developed in MT is further refined and generalized across spatial
positions in higher-level areas such as area MST, as has been
suggested for analogous computations in other areas (Riesenhu-
ber and Poggio, 2000).

Discussion
In this study, we recorded the responses of MT cells in the context
of naturalistic optic flow stimuli. To interpret the neuronal
responses in this rich stimulus context, we constructed a hierarchical
modeling framework that describes MT processing as integration
over excitatory and both DS-Sup and NS-Sup inputs. Most pre-
vious studies of MT have focused on isolating either the excit-
atory tuning of MT neurons in the receptive field center or
individual suppressive influences, such as the surround suppres-
sion (Xiao et al., 1995; Born 2000) or motion opponency
(Snowden et al., 1991; Qian et al. 1994). For example, experimen-
tal studies of suppression usually use the preferred stimulus to
drive the center and gauge the effects of suppression in this sim-
plified context (Snowden et al., 1991; Xiao et al., 1995, 1997). At
the same time, previous modeling studies have primarily focused
on explaining how MT computes velocity from local motion sig-
nals (Qian et al., 1994; Simoncelli and Heeger, 1998; Rust et al.,
2006; Nishimoto and Gallant, 2011) within its receptive field.

Here, by fitting a hierarchical ES model with both excitatory
and suppressive components, our results provide the most com-
plete picture of how different types of suppressive influences in-
teract with excitation to impart selectivity to higher-order

Figure 7. Suppression enhances selectivity to complex optic flow. A, To gauge the ability of
the MO and ES models to capture selectivity of MT neurons to different components of optic
flow, we calculate the correlation coefficient � between each flow component and the neuron
response and compare that predicted by each model across the population of neurons with
measured suppression (n � 33). There are significant improvements for all six optic flow com-
ponents with incorporation of suppression into the model (*p � 0.05, **p � 0.001, Wilcoxon’s
signed-rank test). B, As a second way to gauge this selectivity, we simulate the response of MO
and ES models of the same neuron to different combinations of optic flow and measure how
correlated the responses are as a function of the amount of nontranslational optic flow present
in the stimulus. Each data point shows the average correlation coefficient between the re-
sponses of the MO and ES models over the 33 MT neurons that have both types of suppression.
Responses of the two models, with both components included (black), are highly correlated for

4

translational stimuli (r � 0.92 � 0.05) but decrease progressively for stimuli that contain more
nontranslational optic flow components (black). This trend is highly significant (Spearman’s
rank correlation coefficient, � � 0.38, p � 10 11). DS-Sup appears to contribute to this
selectivity to nontranslational optic flow, as demonstrated by including only the DS-Sup term
with excitation (blue) or NS-Sup term with excitation (green). Models with only NS-Sup are
more correlated with the MO model in general (p � 0.05 when percentage of nontranslational
optic flow is not 0, t test), whereas models with only DS-Sup are similar to the full ES model
(Spearman’s rank correlation coefficient, � � 0.36, p � 10 11). C, To measure to what
extent model output is determined by translational component of the stimulus, we also report
the correlation coefficients between model outputs and the translational components of the
optic flow stimulus in the same context as in B as a function percentage of nontranslational optic
flow. Significant differences between the MO model (red) and ES model (black) are revealed
when the stimuli contain moderate amount of complex optic flow (*p � 0.05, **p � 0.001, t
test). This difference is also observed for models with only DS-Sup (blue) but is absent for
models with only NS-Sup (green).
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motion stimuli. In particular, we find
that suppression can be divided into a
direction-selective component, which ex-
hibits diverse structure and imparts func-
tionally useful higher-order selectivity,
and a non-selective component, which
seems to play the role of surround sup-
pression and normalization.

The use of complex motion stimuli to
probe area MT
The majority of work on area MT has
explored its role in estimating the veloc-
ity of a rigidly translating object (Simon-
celli and Heeger, 1998; Lisberger and
Movshon, 1999; Rust et al., 2006). The
idea dates back to the discovery that re-
sponse of MT neurons is primarily depen-
dent on the motion direction within a
two-dimensional plane (Zeki, 1974).
However, when more complex motion
fields are used, selectivity to higher-order
features, such as speed gradients (Treue
and Andersen, 1996; Xiao et al., 1997) and
surface orientation (Nguyenkim and
DeAngelis, 2003; Sanada et al., 2012), has
been observed, raising the question of
what features of natural vision are repre-
sented by MT neurons. Our results show
that, although excitatory contributions
dictate direction selectivity, they are not
sufficient to explain responses to motion
stimuli with different velocities across vi-
sual space: suppressive contributions with
different spatial profiles than excitation
also significantly modulate MT responses
and thus impart selectivity to complex
motion features.

Here, we focus on understanding the
role of spatial heterogeneity in natural
motion fields and thus use a stimulus—a
random-dot field—that produces an unambiguous velocity sig-
nal as a function of space. This allows us to map the excitatory and
suppressive influences on an MT neuron across space and pur-
posefully avoids the complexities associated with extracting ve-
locity from texture patterns, which is another known aspect of
MT processing (Pack and Born 2001; Rust et al., 2006; Jazayeri et
al., 2012). In particular, one recent modeling study (Nishimoto
and Gallant, 2011) extended such texture-based processing to
explain complex motion stimuli, although as a result did not
focus on the specific roles of spatially distributed suppression in
processing such stimuli. We thus regard this approach as being
orthogonal to understanding motion estimation for textures pat-
terns and expect that the models investigated here might be con-
sistent with and/or ultimately combined with models that
address those complexities (Bradley and Goyal, 2008; Nishimoto
and Gallant, 2011).

Different forms of suppression in MT
Several forms of suppression have been documented in the liter-
ature. For example, neurons in area MT are often suppressed by
motion in the antipreferred direction (Mikami et al., 1986). This
is often termed “motion-opponent suppression,” which is likely

related to similar phenomena that have been reported in psycho-
physical studies (Levinson and Sekuler, 1975; Qian et al., 1994),
single-unit recordings (Mikami et al., 1986; Rodman and Al-
bright, 1987), and functional magnetic resonance imaging
(Heeger et al., 1999).

Surround suppression is another well studied property of MT
receptive fields. Most neurons in area MT have receptive fields with
antagonistic surrounds (Allman et al., 1985; Tanaka et al., 1986;
Born, 2000; Tsui and Pack, 2011), and the classical view is that max-
imal suppression occurs when the surround stimulus moves in the
same direction as that in the center (Bradley and Andersen, 1998;
Born and Bradley, 2005). Other studies have shown that the suppres-
sive surrounds could be quite complex relative to the center, exhib-
iting such properties as asymmetric spatial organization (Xiao et al.,
1997), different contrast sensitivity (Pack et al., 2005), and less direc-
tion selectivity (Hunter and Born, 2011).

Although different suppressive mechanisms are often separately
studied using targeted stimuli, our modeling approach provides a
unified framework for characterizing suppression. We incorporate
the motion-opponency assumption at the local unit level and allow
for both DS-Sup and NS-Sup. Interestingly, for the majority of the
cells we studied, the best model has both selective and non-selective

Figure 8. Role of suppressive surround revealed by population decoding of 3D velocity. A, Schematic of the 3D motion popu-
lation decoding task. We calculate the optic flow pattern generated by object motion in a 3D space, with the motion direction and
speed randomly selected (see Materials and Methods). The resulting velocity field is processed by a population of MT models, and
a linear decoder is fitted to reconstruct the 3D motion-based outputs of 200 randomly selected models. B, Example velocity
patterns used in the decoding task, with the 3D motion direction labeled above each pattern. C, Performance of the decoder based
on input from the MO model (black) and ES model with only DS-Sup (gray) and ES model with both type of suppression (white).
Results are quantified as the ratio of root mean squared error to the range of the parameter; smaller values indicate better
performance. Using outputs of ES models gives better reconstruction performance along all three dimensions than using the MO
models population. ( p � 0.05, t test). D, Percentage improvement of reconstruction performance between the MO model and the
full ES model for model cells with antagonistic suppression (left), orthogonal suppression (middle), and opponent suppression
(right). Significant improvements of reconstruction are observed for cells with antagonistic suppression and orthogonal suppres-
sion but not for cells with opponent suppression (**p � 0.01, n.s. p � 0.05, t test).
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suppression but with different spatial profiles. The DS-Sup is closer
to the receptive field center and appears to directly modulate motion
selectivity, whereas the NS-Sup is more like to be the previously
described surround suppression.

Although our model assumes a feedforward structure, the
source of different forms of suppression remains unclear. Given
the longer latency of suppression, it may be that these suppressive
contributions actually reflect horizontal connections within area
MT or feedback from higher areas, such as area MST. The con-
tribution of different types of suppression may also depend on
the stimulus (Huang et al. 2007). Although the goal of this study
is to reveal types of suppression that are functionally relevant to
processing of naturalistic optic flow, other types suppression,
such as those that are spatially and directionally aligned with
excitation (DeAngelis et al., 1992; Cavanaugh et al., 2002), may
not be revealed by our method.

Spatial heterogeneity of MT processing
Although the classical view of MT receptive fields is that preferred
directions in the center are essentially homogeneous and the sur-
round is antagonistic and circularly symmetric (Tanaka et al.
1986), a handful of studies have focused on spatial heterogeneity
of processing, using stimuli that either separately drove center
and surround regions (Xiao et al., 1995; Orban, 2008) or separately
mapped direction preferences (Richert et al., 2013) or sensitivity
(Britten and Heuer, 1999) within the classical receptive field.

In our model, the spatial heterogeneity is reflected by the different
spatial profiles and direction preferences of excitation and suppres-
sion. Although we assume that the subunit selectivity is the same for
each model component, different direction selectivity and sensitivity
could emerge within the receptive field because of the different com-
binations of excitation and suppression across space attributable to
their different spatial footprints. This effect is most prominent for
cells with orthogonal oriented suppression. The complex surround
of area MT has been shown to play important roles in 3D shape
estimation and motion segmentation (Buracas and Albright, 1996;
Xiao et al., 1997; Gautama and Van Hulle, 2001). The additional
heterogeneity in direction preferences may further contribute to se-
lectivity to curvature in the motion field, which is an important
aspect of natural motion. Indeed, the improvement of accuracy in
3D velocity estimation is most significant when orthogonal suppres-
sion is introduced to the model (Fig. 8D).

The role of area MT in visual motion processing
From a computational perspective, the goal of visual motion pro-
cessing is much broader than estimating 2D velocity. For a be-
having animal, motion stimulus not only depends on object
motion and visual depth but also results from optic flow patterns
imparted by egomotion and eye movements. Multiple problems
are thus involved in motion processing, such as detection of in-
dependently moving objects, egomotion estimation, 3D velocity
estimation, and structure from motion (Beauchemin and Bar-
ron, 1995; Bradley et al., 1998; Pauwels et al., 2010; Sanada et al.,
2012). Although other cues (e.g., disparity; DeAngelis et al., 1998)
are also important, some of these problems involve recognition
of complex motion patterns (Fermüller and Aloimonos, 1995)
and discontinuities of the motion field (e.g., motion segmenta-
tion), which likely require selectivity to higher-order motion fea-
tures. Although motion processing is certainly not complete at
the stage of MT, our results suggest that such higher-order selec-
tivity is already present in feedforward MT processing and can
support behaviorally relevant tasks, such as estimation of the 3D
velocity of a moving object.

MT neurons project to area MST (Ungerleider and Desimone,
1986; Tanaka et al., 1993), which is thought to calculate the heading
direction of the observer (Perrone and Stone, 1994, 1998) and to
estimate 3D velocity (Zemel and Sejnowski, 1998). MST neurons are
more selective to optic flow components than MT neurons (Lagae et
al., 1994) and are more invariant to the stimulus shape (Geesaman et
al., 1997) and position (Duffy and Wurtz, 1995). This selectivity can
be partly explained in a hierarchical framework using model MT
neurons as inputs (Mineault et al., 2012), and our results here sug-
gest that processing in MT neurons might more directly facilitate
these ultimate goals of motion processing.
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