
Systems/Circuits

Inferring Cortical Variability from Local Field Potentials
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The responses of sensory neurons can be quite different to repeated presentations of the same stimulus. Here, we demonstrate a direct
link between the trial-to-trial variability of cortical neuron responses and network activity that is reflected in local field potentials (LFPs).
Spikes and LFPs were recorded with a multielectrode array from the middle temporal (MT) area of the visual cortex of macaques during
the presentation of continuous optic flow stimuli. A maximum likelihood-based modeling framework was used to predict single-neuron
spiking responses using the stimulus, the LFPs, and the activity of other recorded neurons. MT neuron responses were strongly linked to
gamma oscillations (maximum at 40 Hz) as well as to lower-frequency delta oscillations (1– 4 Hz), with consistent phase preferences
across neurons. The predicted modulation associated with the LFP was largely complementary to that driven by visual stimulation, as well
as the activity of other neurons, and accounted for nearly half of the trial-to-trial variability in the spiking responses. Moreover, the LFP
model predictions accurately captured the temporal structure of noise correlations between pairs of simultaneously recorded neurons,
and explained the variation in correlation magnitudes observed across the population. These results therefore identify signatures of
network activity related to the variability of cortical neuron responses, and suggest their central role in sensory cortical function.
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Introduction
Sensory neuron responses to multiple presentations of identical
stimuli can be highly variable (Tolhurst et al., 1983; Softky and
Koch, 1993; Faisal et al., 2008; Masquelier, 2013). While some of
this variability may simply reflect noise that originates at early
stages of processing (Zohary et al., 1994; Faisal et al., 2008), an-

other potential source of variability is coordinated patterns of
ongoing activity in the cortical network (Arieli et al., 1996). Such
patterns are often referred to as the “cortical state,” which has in
turn been linked to a variety of cognitive and behavioral processes
(Engel et al., 2001; Cohen and Newsome, 2008; Morishima et al.,
2009), including working memory (Mendoza-Halliday et al.,
2014), the allocation of attention (Saalmann et al., 2007), and the
general state of arousal (Constantinople and Bruno, 2011). Thus,
rather than reflecting neuronal noise, trial-to-trial variability may
represent the influence of the cortical state, which is of clear
importance for sensory cortical function.

A key challenge in uncovering the role of the cortical state in
sensory function is being able to relate cortical state to concrete,
experimentally observable quantities. Cortical state might be di-
rectly ascribed to changes in sensory processing, and thus in-
ferred as “hidden variables” (Niell and Stryker, 2010; Goris et al.,
2014; Pachitariu et al., 2015; Rabinowitz et al., 2015). However,
the dynamics of cortical activity often can be too complex to
reduce to a few variables—particularly in the awake animal (Tan
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Significance Statement

The function of sensory neurons is nearly always cast in terms of representing sensory stimuli. However, recordings from visual
cortex in awake animals show that a large fraction of neural activity is not predictable from the stimulus. We show that this
variability is predictable given the simultaneously recorded measures of network activity, local field potentials. A model that
combines elements of these signals with the stimulus processing of the neuron can predict neural responses dramatically better
than current models, and can predict the structure of correlations across the cortical population. In identifying ways to understand
stimulus processing in the context of ongoing network activity, this work thus provides a foundation to understand the role of
sensory cortex in combining sensory and cognitive variables.
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et al., 2014; Pachitariu et al., 2015). Alternatively, multielectrode
recordings provide signals that could be used to infer the more
complex network variables predictive of trial-to-trial variability.
For example, simultaneously recorded neurons often have shared
variability, or “noise correlations” (Zohary et al., 1994; Cohen
and Kohn, 2011), which can be used in predicting the activity of
single neurons (Pillow et al., 2008; Ohiorhenuan et al., 2010;
Okun et al., 2015; Schölvinck et al., 2015). Relevant elements of
network activity might also be reflected in lower-frequency fluc-
tuations in the extracellular voltage known as local field poten-
tials (LFPs). LFPs are thought to largely reflect synchronous
synaptic inputs to a given area, thus potentially containing infor-
mation about the specific aspects of network activity related to
inputs into a given area (Buzsáki and Draguhn, 2004; Khawaja et
al., 2009; Buzsáki et al., 2012; Einevoll et al., 2013). Likewise, LFPs
recorded in multiple brain areas are often related to behavioral or
cognitive variables (Fries et al., 2001; Lee et al., 2005; Zanos et al.,
2015).

Multielectrode recordings thus provide a large number of
possible signals that might be correlated with cortical state and its
influence on sensory processing. However, many of these differ-
ent signals will exhibit intertwined correlations that have typi-
cally been studied separately, such as between neural activity and
stimulus, between LFP and stimulus (Belitski et al., 2008; Mon-
temurro et al., 2008), between different bands of the LFP (Jensen
and Colgin, 2007; Canolty and Knight, 2010), between LFPs
across depth (Xing et al., 2009), and between LFP and neural
activity (Rasch et al., 2008). Thus, determining aspects of re-
corded activity that are related to trial-to-trial variability, and by
extension the modulation of stimulus processing in the cortex,
requires adopting an integrated analysis approach, which goes
beyond looking at these different relationships in isolation.

Here, we describe a structured statistical model that predicts
neural activity recorded in the middle temporal (MT) area using
the visual stimulus, LFPs, and multiunit activity (MUA) recorded
simultaneously on other electrodes. This modeling approach nat-
urally accounts for the different correlations among stimulus,
MUA, and LFP signals, and thus is able to find the combination of
factors that yield the best predictions of the observed MT neuron
spikes. We found that information in the LFP can offer dramatic
improvements (on average, fivefold) in predicting MT neuron
responses over using the stimulus alone. MT neurons have very
consistent selectivity to two frequency bands in the LFP, gamma
(30 –70 Hz) and delta (1– 4 Hz), with consistent phase prefer-
ences across the population. By comparison, the use of simulta-
neously recorded neurons to infer cortical variability offered only
twofold improvements over a model that used the stimulus alone.
The inferred relationships of neural responses to ongoing net-
work activity can also predict the form of noise correlations
among MT neurons. These results thus provide a means to char-
acterize cortical neuron activity in terms of a combination of
stimulus processing and network modulation evident in LFPs,
and more generally suggest a central role of ongoing network
activity in modulating sensory neuron function.

Materials and Methods
Electrophysiology. Data were recorded from two female adult rhesus ma-
caque monkeys, prepared using standard surgical techniques that have
been described previously (Mineault et al., 2012). Eye movements were
monitored at 500 Hz by an infrared eye tracker (EyeLink II; SR Research).
Extracellular recordings were performed on 108 well isolated single units
during a passive fixation task, of which 93 units were recorded using a
multisite linear electrode array (U-probe; Plexon) with 16 or 24 record-

ing sites separated by 100 �m. An additional 15 units recorded with
single electrodes contributed to the measurements of stimulus-locked
response power (Fig. 1). Signals were amplified, bandpass filtered, sorted
on-line, and resorted off-line, using spike-sorting software (Plexon) to
isolate single units. We recorded LFPs using dedicated custom hardware
that had wideband analog filters (two-pole high-frequency cutoff at 2.5
kHz and low-frequency cutoff of 0.7 Hz) and a sampling rate of 10 kHz.
Recording broadband signals allowed us to remove spurious correlations
between spikes and LFPs using a Bayesian spike removal algorithm (Za-
nos et al., 2011). All aspects of the experiments were approved by the
Animal Care Committee of the Montreal Neurological Institute and were
conducted in compliance with regulations established by the Canadian
Council on Animal Care.

Stimulus presentation. Animals were trained to fixate on a small fixa-
tion point during the presentation of a continuously evolving visual
stimulus. The animals were given a liquid reward periodically for main-
taining fixation within 2° of the fixation point. Stimuli consisted of con-
tinuously varying optic flow (Fig. 1A) (Mineault et al., 2012; Cui et al.,
2013). Briefly, the stimulus was composed of moving dots whose velocity
field was generated as a random combination of the following six optic
flow components: horizontal/vertical translation, expansion, rotation,
and horizontal/vertical shears. The stimulus was displayed in a slowly
moving aperture with a diameter ranging from 8° to 20°, the position of
which slowly evolved, following a Gaussian noise distribution that was
low-pass filtered in time with a cutoff of 0.05– 0.10 Hz, centered on the
receptive fields of the recorded neurons. All stimuli were presented on a
CRT monitor with a display resolution of 1600 � 1000 pixels (49° � 36°
of visual field at a distance of 50 cm) and a 60 Hz frame rate.

All neurons were presented with a long continuous stimulus lasting
between 10 and 36 min (mean � 18 min), as well as a short segment of the
stimulus (5 s) that was centered on the receptive field of the cell and
repeated between 60 and 240 times (mean, 96 trials). The repeats were
presented continuously (with no gap in between successive trials) to
minimize transients due to onset responses. The long continuous stim-
ulus presentations were used to estimate model parameters, and model
performance was evaluated on the repeat trials (i.e., for cross-validation).
In addition, we used these repeated presentations to measure the re-
sponse reliability and to distinguish between stimulus-locked and trial-
variable elements of the response.

For both continuous trials and repeated trials, we excluded all data
associated with lapses in fixation (when the gaze location of the animal
deviated by �1° from the fixation point), from 100 ms before the lapse to
500 ms after the recovery of fixation. Only periods with fixations that
were longer than 1 s were used for model fitting and evaluation, resulting
in an average of 10.1 � 3.2 min of usable data for each unit.

Estimating the amount of firing rate variance. While it is clear that MT
neuron spike trains are not consistent across repeated presentations of
the stimulus (Fig. 1C), there is no established method to estimate exactly
how much neural activity is predictable from the stimulus alone versus
“trial-variable” elements, and thus attributable to other network influ-
ences. Specifically, if the firing rate on the ith trial is represented by �(i )(t),
where t is the time relative to the beginning of each trial, the law of total
variance gives the following:

Varit��
�i��t�	 � Vart�Ei��

�i��t�		 � Et�Vari��
�i��t�		, (1)

where E represents the “expectation” (mean with infinite data) over the
indexed variable, and thus Ei[�

(i )(t)] � �psth(t) is the trial-averaged firing
rate [i.e., peristimulus time histogram (PSTH)]. Thus, the total firing rate
variance (left side of Eq. 1) is the sum of the stimulus-locked firing rate
variance and trial-variable variance.

The challenge is that the spike count n(i )(t), rather than the firing rate
�(i )(t), is observed on individual trials. Therefore, assumptions are nec-
essary to estimate how much of the observed variance in the spike count
is attributable to firing rate variance (Amarasingham et al., 2015); i.e.,
estimating Vari�

(i )(t) (rightmost term in Eq. 1) from the data. Because
the variance of the stimulus-locked firing rate Vart[�psth(t)] (the other
term in Eq. 1) is the variance of the PSTH (which we adjust for finite-
sample bias using Sahani and Linden, 2003), summed together this gives
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the total firing rate variance (left side of Eq. 1), from which we can
estimate the fraction of MT neuron activity that is stimulus locked (Fig.
1D; see Fig. 3D), as well as how much of this is explained by the models we
consider (see Fig. 6E).

To estimate the trial-variable firing rate variance Vari[�
(i )(t)] of a given

MT neuron with observed spike counts n (i )(t), we constructed a surro-
gate model that is constrained to have the same stimulus-locked firing
rate as the observed data �psth(t), as well as to reproduce the observed
interspike interval distribution, which is an essential component for con-
straining the spike count variability (Czanner et al., 2008). Specifically,
we fit a rate-modulated Bernoulli process with a conditional spike prob-
ability given by the following:

�mod
�n� �t� � F �gpsth�t� � gspk�t� � �	, (2)

where � is the spiking threshold, and F[g] � 1/[1 
 exp(�g)] is a sigmoid
spiking nonlinearity function used to describe the Bernoulli process
(Haslinger et al., 2012). The two other terms in the model correspond to
the outputs of a stimulus-driven term gpsth(t) and a spike history term
gspk(t). They are generated using linear combinations of B-spline basis
functions, such that:

gpsth�t� � �
i

ki
psthBi,2�t�, (3)

where ki
psth are individual amplitudes of each piecewise linear (i.e.,

second-order) spline basis functions Bi,2(t), which have a 25 ms spacing;
and

gspk�t� � �
ts

�
i

hiBi,1�t � ts�, (4)

where ts is time of each spike, hi is a parameter for the spike history term
(Paninski, 2004), and Bi,1(t) is a unit-pulse (i.e., first-order) spline basis
function, with knots spaced at 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 16, 20, 28, and 36
ms. The hi values were all constrained to be negative. The parameters ki

psth

and hi were estimated as a generalized linear model using maximum-
likelihood estimation (i.e., with logistic regression; Haslinger et al.,
2012). We simulated the model at 1 ms resolution (where spike refracto-
riness is important) to generate a spike train for each trial, and pooled the
resulting data into 25 ms bins to compare with the spike counts of the
recorded data.

The fitted model accurately captured the PSTH, as well as the mea-
sured refractoriness for MT neurons (i.e., interspike interval distribu-
tion). Note that, even though the 25 ms bin size is long relative to the
spike refractory period of the neurons, the presence of spike history
effects at shorter timescales contributes significantly to the reliability of
the spike count in these longer time windows. By construction, the sur-
rogate model had no trial-variable firing rate, but shared the same
stimulus-locked firing rate variance and equivalent noise in spike gener-
ation. As a result, we estimated the trial-variable firing rate variance by
taking the difference of the variances of the observed and simulated
spiking, as follows:

Varit��TV
�i��t�	 � Varit�n

�i��t�	 � Varit�nmod
�i� �t�	, (5)

Stimulus s(t)

PP = 0.50

PSTH
Model

A

B

C

 

Time (sec) Time (sec)

PP = 0.64

Exc Sup NS-Sup

Direction
selectivity

5 deg

REPEATED OPTIC FLOW STIMULUS REPEATED OPTIC FLOW STIMULUS

Fraction of stimulus-locked power

5

N
um

be
r o

f c
el

ls

1 2 3 4

1 2 3 4
0

10

20

30

1 2 3 4

1 2 3 4
0

10

20

30

40

Sp
ik

e 
ra

st
er

 F
iri

ng
 R

at
e 

(H
z)

Time (sec) Time (sec)

D

+

Firing rate

0.0 0.2 0.4 0.6 0.8 1.0
0

10

15

Figure 1. Response variability of MT neurons. A, The responses of two MT neurons to repeated presentations of a continuously varying optic flow stimulus, with four example frames from a section
of the repeated stimulus segment (top). The peristimulus time histograms (PSTHs, bottom, black) are compared with the firing rate predictions of the stimulus-processing model (red), labeled with
the fraction of stimulus-locked response explained by the model [predictive power (PP)]. B, Spike rasters of the same neurons as in A, from which the PSTHs are generated. The shaded areas mark
epochs where data are excluded from analysis due to periods when eye position was outside the fixation window. C, Model schematic illustrating the main components of the stimulus-processing
model: the stimulus composed is first processed locally by direction- and speed-selective local subunits, and then gets pooled across space separately by Exc (left), Sup (middle), and NS-Sup (right)
components. Red and blue arrows (left) indicate direction selectivity for the Exc and Sup terms. Finally, a spiking nonlinearity is applied to this signal to transform it into a firing rate prediction
(bottom). D, The distribution of the stimulus-locked rate variation across MT neurons (n � 108, mean � 45.9 � 25.9%; see Materials and Methods). The black arrows indicate the location of the
two example neurons in A (stimulus-locked variance � 16.5% and 96.4%).
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where nmod
�i� (t) is the simulated spikes from the surrogate model (Eq. 2).

The fraction of stimulus-locked rate variation was then given by
Vart[�psth(t)]/(Varit[�TV

�i� (t)] 
 Vart[�psth(t)]) (Fig. 1D).
We validated these methods on simulated data, where spike counts

were generated given a known trial-variable firing rate, �(i )(t). The esti-
mated fraction of stimulus-locked rate variation based on the method
agreed very well with the ground truth. Such estimates of the relationship
between these quantities represent an improvement in describing the
data over heuristics using constant variance-to-mean ratios typical of a
Poisson neuron (Churchland et al., 2011; Goris et al., 2014). For example,
we find that, for all neurons, different time points in the experiment (i.e.,
in response to different stimuli) will have different variance-to-mean
ratios in their spike count, which can be predicted by our surrogate
model. Our method shares many of the same assumptions with a previ-
ously proposed method (Czanner et al., 2008), but that method could not
be directly used due to the rapidly varying stimulus-driven firing rate
variations in our data on the order of 25 ms (Cui et al., 2013).

Statistical modeling framework for describing MT neuron responses. We
used a maximum likelihood-based framework that included both
stimulus-dependent terms and network activity-dependent terms to
model MT neuron responses. We assumed that neuron responses are
generated by an inhomogeneous Poisson process with an instantaneous
rate �mod(t). Measured spike trains were binned in time at 5 ms resolu-
tion to obtain the observed response rate robs(t). The log-likelihood (LL)
of the model is then given (up to an additive constant) by:

LL�robs�t�, r�t�	 � �
t

�robs�t�log�mod�t���mod�t�	, (6)

where robs(t) is the measured neuronal response, and �mod(t) is the
model predicted firing rate (Paninski, 2004). Note that to maximize this
quantity, the model predicted rate should be high when the observed rate
is high (maximizing the first term), and otherwise is as low as possible
(minimizing the second term).

All models used a fixed spiking nonlinearity, F[�], that acts on the sum
of the separate outputs of the stimulus-processing component gstim(t),
the LFP component gLFP(t), and the multiunit activity component
gMUA(t):

�mod�t� � F �gstim�t� � gLFP�t� � gMUA�t� � �	, (7)

where � is the spiking threshold and the spiking nonlinearity function
F[�] was chosen to be of the form log[1 
 exp(�)]. Such a model can be
optimized within the maximum-likelihood framework efficiently (Cui et
al., 2013; McFarland et al., 2013).

The stimulus-processing component of MT neuron model. For neurons
recorded during the continuous optic flow stimuli, we based the
stimulus-processing model component on a previously developed model
(Cui et al., 2013). Briefly, the stimulus selectivity of MT neurons is based
on nonlinear combinations of localized processing by V1-like inputs.
There are three stimulus-processing terms (Fig. 1B): direction-selective
excitation (Exc), direction selective suppression (Sup), and non-
direction-selective suppression (NS-Sup), each with unique direction
selectivity (except NS-Sup), speed sensitivity, and spatial and temporal
integration. All components of the stimulus model were fit to the data
at 25 ms resolution, as previously described (Cui et al., 2013). How-
ever, for the models that include network terms, described below, the
output of the stimulus component was upsampled to 5 ms resolution
using linear interpolation.

The network components of the MT neuron model. Our model inferred
the relevant network inputs from both the LFPs and MUA recorded
from the electrode array. To process the LFPs, a continuous wavelet
transformation was applied either to the LFP signals themselves or, in the
case of multielectrode array recordings, to their second spatial derivative,
using a complex Morlet mother wavelet at 16 logarithmically spaced
scales, corresponding to center frequencies from 0.5 to 70 Hz. All data
were processed at 5 ms resolution. Calculation of the spatial derivatives of
the LFPs is closely related to current source density analysis (Nicholson
and Freeman, 1975), and yielded a more localized distribution of model

weights compared with those without this spatial transform, although
this addition had a negligible effect on overall model performance.

The instantaneous phase �db(t) and amplitude 	db(t) of the (trans-
formed) LFPs at a given depth (d) and a frequency band (b) were derived
from each component of the complex-valued wavelet transform. To
model the relationship between the response of a neuron and the LFP
signals, we used amplitude-modulated sine and cosine terms as linear
predictors, with model coefficients 
db and �db:

gLFP�t� � �
d,b

	db�t��
dbcos��db�t�	 � �db sin��db�t�		 � kLFP � XLFP�t�,

(8)

where XLFP(t) is a design matrix with components 	db(t)cos[�db(t)] and
	db(t)sin[�db(t)], and kLFP is the LFP-receptive field vector that contains
the corresponding model parameters 
db and �db. Such a linear model
can be viewed as fitting an (amplitude-modulated) sinusoidal depen-
dence on the LFP at each frequency and depth, with model weight
sqrt(
db

2 
 �db
2 ) and preferred phase arctan(�db/
db).

We also used simultaneously recorded MUA to predict neuronal re-
sponses with a causal coupling filter. The generating signal based on
MUA is:

gspk�t� � �
d,

kdrd�t � � � kspk � Xspk�t�, (9)

where rd(t) is the MUA from depth d and kd reflects the dependence of
the spike response on MUA at d and time  in the past. The MUA from
the same channel as the recorded neuron considered was always excluded
to avoid potential contamination, and for other channels with well iso-
lated single units, the isolated single unit replaced the MUA signal.

Regularization of the LFP model. Because we sampled the LFP signal at
16 frequencies, the LFP model has 32 parameters for each depth and 512
parameters across 16 depths. The MUA filters include 15 depths and 15
lags for each unit. To avoid overfitting, we applied L2 regularization to
the model coefficients (McFarland et al., 2013), using a penalty term
added to the LL that penalizes nonsmoothness of the filter. For the LFP
model, this term can be expressed as:

LLsmooth
LFP � �d

LFP��Ld
db�2 � �Ld�db �2� � �b
LFP��Lb
db �2 � �Lb�db �2�,

(10)

where Ld and Lb are discrete Laplacian operators with respect to the
depth and frequency dimensions. The hyperparameters �d

LFP and �b
LFP

control smoothness across frequency bands and across cortical depth,
respectively. For the MUA filter, the penalty term is similarly expressed:

LLsmooth
spk � �d

spk�Ldkd �2 � �
spk�Lkd �2. (11)

The hyperparameters �d
LFP, �b

LFP, �d
spk, and �

spk were adjusted using a
nested cross-validation scheme, where 20% of the fitting data were ran-
domly selected and reserved during optimization of the LFP filter. The
regularization parameters that gave the best performance on the re-
served data were used to evaluate performance in the cross-validation
data (which were not used to fit the model coefficients nor the hyper-
parameters).

Evaluation of model performance. In this article, we measured model
performance using two different metrics, based on likelihood and vari-
ance. The standard metric for statistical models of this sort is the cross-
validated log-likelihood (LLx), which is the log-likelihood of the model
(Eq. 5) evaluated on set-aside data not used to fit the model. We report a
log-likelihood relative to a null model, LLmodel � LLnull, where the null
model simply predicts the overall average firing rate. Although the cross-
validated log-likelihood is a more sensitive measure of model perfor-
mance relative to variance-based measures such as explained variance
(R 2), it lacks the intuition that variance-based measures provide, and
thus we report both.

Traditional variance-based measures can be dominated by “unex-
plainable” spike count noise, and standard methods to correct for this
depend on the assumption of no trial-to-trial rate fluctuations (Sahani
and Linden, 2003). Thus, to gauge the performance of the model in
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capturing trial-variable response power, we used the variance of the
model output as a proxy for explained variance, as the maximum-
likelihood estimation optimizes the predicted firing rate to match the
elements of the observed response it can explain. As validation of this
metric, we find that likelihood improvements closely match this
variance-based metric (see Fig. 3C), and thus we use it in this article to
translate the likelihood-based measures of improvement into more fa-
miliar terms. It also allows for the decomposition of model-predicted
stimulus-locked and total power to compare with our estimates of ob-
served response power described above (see Fig. 6E).

In all cases, cross-validated model performance was based on the data
recorded in response to the stimulus repeats. Because the overall gain and
offset of the spiking nonlinearity often drifts over long periods, we refit
these two parameters from the overall model (fit using long continuous
stimuli) using the odd repeat trials. We thus excluded the odd repeats
from cross-validation and used only the even repeated trials to measure
model performance.

Measurement and prediction of noise correlations. To estimate the noise
correlation between pairs of simultaneously recorded neurons, we first
calculate the cross-covariance of the neural responses on repeat trials
over a range of latencies , as follows:

Covij�� �
1

N�T � � �k�1

N �
t�1

T��ri
�k��t� � �ri

�k���rj
�k��t � � � �rj

�k��,

(12)

where, ri
�k��t� is the response of the ith neuron on the kth trial, �ri

�k� is the
average response rate of neuron i on the kth trial, N is the number of
trials, and T is the duration of each trial. To isolate the “noise covari-
ance,” we subtract estimates of the stimulus-driven firing rate comodu-
lation Covij

stim�� using a shift predictor that considers neural responses
on adjacent pairs of trials, as follows:

Covij
stim�� �

1

N�T � ��k�1

N�1�
t�1

T�

�ri
�k��t� � �ri	�rj

�k
1��t � � � �ri	.

(13)

The noise correlation between neurons i and j is then given as follows:

�ij�� �
Covij�� � Covij

stim��

�i�j
. (14)

Noise correlation estimates are normalized by the product of SDs of the
spike count response for each neuron in the pair, which for the ith neu-
ron is as follows:

�i �
1

N �
k�1

N �1

T �
t�1

T

�ri
�k��t� � �ri	

2. (15)

The noise correlation predicted by the model was calculated by re-
placing the measured responses in Equations 12 and 13 with the
model-predicted neural responses. In all cases, we excluded fixation
break periods from the calculation. For example, if fixation was lost at
any time on the kth trial between t and t 
 , this data point was
excluded from the summation in Equation 12, and the normalization
factor was adjusted accordingly.

Statistical analyses. We used robust statistics when comparing perfor-
mances of different models, as the log-likelihoods were often not nor-
mally distributed. Paired comparisons of group medians were performed
with two-sided Wilcoxon signed rank tests. The variability of medians
was estimated using bootstrapping techniques (random sampling with
replacement, using 1000 repetitions). Correlations between measured
and predicted noise correlations were computed using Pearson’s
product-moment correlation coefficient.

Measurement of phase-locking strength. We measure the phase-locking
strength using standard approaches (Lachaux et al., 1999). It is defined as
follows:

PLSdb �
1

Nspk
��

i�1

Nspk

exp� j�db�tspk
i ���. (16)

where tspk
i is the time of the ith spike, Nspk is the total number of spikes, j

is the imaginary number � � 1, and �.� is the magnitude of the resulting
complex number. The maximum value of this quantity is unity, when all
spikes occur at the same phase, and each complex vector adds construc-
tively. The minimum value is zero, when spikes are uniformly distributed
across phase, and the complex vectors cancel. This quantity was calcu-
lated across both frequency bands and depths independently.

Results
Response variability of MT neurons
We presented a naturalistic optic flow stimulus (Fig. 1A, top) to
macaques during a passive fixation task while recording from
neurons in the MT area with a laminar multielectrode array. This
stimulus was designed for the purpose of performing detailed
characterization of MT neuron selectivity to visual motion (Cui
et al., 2013). Using a recently developed model of MT stimulus
processing, we could predict neural responses to these stimuli
accurately, as is evident from comparing the model-predicted
firing rates to the across-trial average response (or PSTH; Fig. 1A,
bottom). However, the success in explaining the trial-averaged
response did not translate into the ability of the model to
predict spiking patterns on individual trials, which could dif-
fer significantly between repeated presentations of the same
stimulus (Fig. 1B).

Such trial-to-trial variability is fundamentally unpredictable,
or unexplainable, given the stimulus alone. Thus, such variability
is usually ignored in measures of model performance, which fo-
cus on reproducing the trial-averaged firing rate. For example,
the MT neuron stimulus-processing model derived in our previ-
ous study (Fig. 1C) had a predictive power, or a fraction of ex-
plainable variance correctly predicted (Sahani and Linden, 2003),
of 0.33 � 0.26 (mean � SD; n � 108), which is comparable to the
performance of other successful models of stimulus processing
in visual cortex (David and Gallant, 2005; Willmore et al.,
2010; Nishimoto and Gallant, 2011). However, if other exper-
imentally uncontrolled variables such as “cortical network
state” were important for the function of that MT neuron, the
predictive power would overestimate model performance, be-
cause some modulation in the firing rate of the neuron would
be, in principle, explainable if these variables were known.
Thus, an important question is how much of the trial-to-trial
response variability is due to fluctuations in the underlying
firing rates of neurons? In other words, we would like to know
how much across-trial response variability might be predicted
given appropriate knowledge of the relevant ongoing cortical
processes.

We thus estimate how much trial-to-trial variability in the
observed spiking data is due to underlying firing rate modula-
tions. Although there is generally no unique way to measure the
firing rate of a neuron from a single trial of recorded spiking data
(Amarasingham et al., 2015), here we adopt a reasonable set of
assumptions to estimate this quantity. Namely, we simulate spik-
ing data using a model that generates the observed trial-averaged
firing rate (PSTH) and has the observed interspike interval dis-
tribution (see Materials and Methods). Such a model will have
different patterns of spikes on each trial, but the variance in its
spike train will be consistent with a single underlying rate that is
common across all trials. Due to the additive properties of these
different sources of variance (i.e., rate modulation vs spike gen-
eration, given the rate), the difference between the response vari-
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ance of the observed data and that of this model neuron provides
an estimate of the total variance associated with these unobserved
trial-to-trial firing rate fluctuations. This variance then adds to
the variance of the trial average (“stimulus-locked”) response to
arrive at an estimate of the total firing rate variance of the neuron.
We validated such an estimate with simulated data, as well as on
other datasets (see Materials and Methods).

We used this measure of total firing rate variance to ask how
much of each MT neuron response was, in principle, predictable
given the stimulus (i.e., the fraction of the firing rate of each
neuron that is consistent across trials). Across the population of
MT neurons, there was a wide range for this quantity (Fig. 1D).
While some neurons exhibited little trial-variable differences in
rates (Fig. 1B, right), most neurons exhibit significant trial-to-
trial variability in their rates (Fig. 1B, left). On average, less than
half of the firing rate fluctuations were stimulus locked (0.46 �
0.26, n � 108), meaning that even a “perfect” model of MT stim-
ulus processing could explain less than half of the firing rate of the
neuron.

Dramatic improvement of model predictions using the LFP
We hypothesized that this trial-to-trial firing rate variability
might reflect the influence of ongoing patterns of activity in the
cortical network (Arieli et al., 1996; Masquelier, 2013). Such co-
ordinated activity patterns can be detected in LFPs recorded si-
multaneously with spiking activity (Banerjee et al., 2012),
suggesting that LFP signals might be used to predict trial-to-trial
variability (Kelly et al., 2010; Haslinger et al., 2012). Because only
some components of the LFP signal are predictive of cortical
neuron activity, we first separated the LFP into different fre-
quency bands, which are thought to represent distinct physiolog-
ical sources as well as unique aspects of network dynamics
(Buzsáki and Draguhn, 2004). We also used LFP signals across
cortical depths to further resolve the different sources contribut-
ing to the LFP (Schroeder and Lakatos, 2009; de Cheveigné et al.,
2013; Fig. 2A).

We first used standard methods to quantify the relationship
between MT neuron spiking and these different components of
the LFP signals. In particular, we measured the “phase-locking
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strength” (Lachaux et al., 1999; Fig. 2B, top, example neuron),
which quantifies the extent to which the spikes of a neuron occur
at a consistent phase of a given LFP component and is small when
spikes are unrelated to LFP phase. Most MT neurons demon-
strated significant phase locking to a wide range of LFP bands,
concentrated in the delta (1– 4 Hz) and gamma (30 –70 Hz)
bands. Note that because LFP signals at different frequencies and
cortical depths are correlated (Buzsáki and Draguhn, 2004), mea-
sures such as phase-locking strength that treat each LFP compo-
nent independently will reflect these correlations rather than
distinct sources of information about MT spikes, and thus extend
across depth and have broad frequency tuning (Fig. 2B, top).
Furthermore, measuring the spike–LFP relationship without tak-
ing stimulus processing into account cannot isolate the compo-
nents of the LFP that are most useful for capturing the trial-to-
trial firing rate fluctuations in particular.

An alternative approach, which addresses the above limita-
tions, is to build an explicit model that predicts the neural re-
sponse given both the stimulus and the observed LFP signals (Fig.
2C). The LFP component of this model assigns a weight and
preferred phase to each LFP frequency band and depth, and is
combined with the previously derived stimulus-processing
model to obtain an optimal prediction given both stimulus and
LFP. These parameters can be selected using maximum likeli-
hood methods such that these different elements are combined
appropriately to best explain the MT neuron response, automat-
ically accounting for the strong correlations among the various
explanatory factors.

In particular, the weights assigned by the model to different
LFP components are much more localized to particular depths
and frequency bands than standard measures such as phase-
locking strength (Fig. 2D), which reflect the strong correlations
among LFP components. Despite the large apparent differences
between model-based and standard measures of spike–LFP cou-
pling, we verified that our models correctly predicted the ob-
served pattern of phase-locking strength (Fig. 2B, bottom).
Furthermore, because the components of the model accounting
for the LFP and stimulus are optimized simultaneously, the LFP
component weights are selected to specifically predict trial-
to-trial variability and ignore elements of the LFP that are
“redundant” with the stimulus. In the absence of the stimulus-
processing component, the parameters of the LFP component
had larger weights for the low-frequency bands (Fig. 2E), reflect-
ing a relationship between low-frequency LFP components and
the stimulus itself (Belitski et al., 2008; Montemurro et al., 2008).

The addition of the LFP component dramatically improved
the ability to predict the observed MT spike trains. To quantify
the improvement in the ability of the model to predict MT spike
trains using the LFP in addition to the stimulus, compared with
using the stimulus alone, we first compare the “likelihoods” that
each model assigns to the data, using appropriate methods for
cross-validation (see Materials and Methods). We measured
model performance first at 25 ms resolution (Fig. 3A, left) in
order to make a fair comparison to models that only use the
stimulus (and thus only predict the firing rate at the slower time-
scales of temporal filtering in MT) (Cui et al., 2013). In this case,
the addition of the LFP component resulted in a nearly threefold
increase (2.91 � 0.43; p � 10� 12, n � 93) in the LLx. Considering
the model performance at a time resolution of 5 ms revealed
further improvement (Fig. 3A, right; 4.5 � 0.8-fold increase in
LLx; p � 10� 12), because the gamma component of the LFP helps
to predict spiking activity at these finer timescales, which cannot
be predicted by the more slowly changing stimulus component.

While in all cases the models used LFP signals from all available
electrodes, a large fraction of this model improvement was ob-
tained using only the LFP signal recorded on the same channel as
the recorded unit (3.02 � 0.27-fold increase over the stimulus-
processing model; p � 10� 12, n � 93).

While LLx is the most accurate way to compare model predic-
tions using single-trial spiking responses, its specific values are
less interpretable compared with trial-averaged measures such as
R 2 and predictive power, which provide a measure of absolute
model performance relative to the perfect model. To provide an
additional, more intuitive, measure of model performance, we
next compared the variance of the model predicted firing rates
with the total firing rate variance estimated above. Because the
magnitude of model-predicted firing rates is implicitly adjusted
to best match the data, the variance of model-predicted rates
provides a useful proxy for the explained variance, given that the
“true” trial-to-trial firing rates are unobserved. Indeed, the
model-predicted variance (Fig. 3B) was highly correlated with
LLx improvements across neurons (Pearson’s correlation coeffi-
cient � 0.984, p � 10� 67; Fig. 3C), suggesting that the dramatic
improvements in LLx directly translate into improvements in the
proportion of response variance explained by the models.

To ensure that the ability of the model to predict spiking from
the LFPs was not due to contamination of the LFPs by the spike
waveforms themselves, we used a robust spike-removal algo-
rithm to subtract spikes from the LFP signal (see Materials and
Methods; Zanos et al., 2011). Furthermore, we performed an
additional control by comparing models that were fit without
using the LFP signal from the electrode where the unit was re-
corded, using only signals from neighboring electrodes that con-
tain negligible spike artifacts from the recorded neuron (Zanos et
al., 2012). We indeed found that the LFP model parameters, in-
cluding weights and preferred phases, were comparable when
using LFPs from the same electrode versus a neighboring elec-
trode 100 �m away (data not shown).

Overall, these results suggest that much of the trial-variable
activity of MT neurons—which is typically considered “noise”
in the context of stimulus processing—is the result of network
activity that is reflected in the LFPs. Indeed, the importance of
the LFPs for the model predictions was larger for cells that had
more trial-to-trial variability (i.e., smaller percentages of
stimulus-locked power; Fig. 3D). This demonstrates that neu-
rons with large trial-to-trial fluctuations in activity, rather
than necessarily being unreliable, might simply be more
strongly coupled to ongoing network activity, and obtaining
an accurate picture of their function requires taking such in-
fluences into account.

Components of the LFP predictive of spiking activity
These models also identify the particular components of the LFP
that are useful in predicting MT neuron responses, providing an
alternative to standard spike–LFP measurements (Fig. 2). We
found that LFP weights in a given frequency band were often
concentrated at a particular depth (relative to the channel from
which the spikes were obtained), but there was significant varia-
tion in the LFP frequencies and depths used to predict neural
responses (Fig. 4A). Note that we could only extract depth rela-
tive to the recorded unit (vs absolute depth in the cortex), given
that our electrode penetrations were generally not orthogonal to
the cortical layers. To look for consistent features of the LFP
model weights across the population, we aligned the weight pro-
files relative to the channel where the spikes were recorded (Fig.
4B). This procedure revealed consistently stronger weights in the
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gamma band (30 –70 Hz) at the same
depth as the recorded unit, and more dif-
fuse weights across depth in the delta band
(1– 4 Hz) and beta band (12–30 Hz).

To quantify the relative importance of
different LFP frequency bands in predict-
ing spiking responses, we measured the
impact of removing individual frequency
bands on model performance (Fig. 4C).
This analysis showed that the delta (1– 4
Hz) and gamma (30 –70 Hz range) bands
provided the largest contributions, con-
sistent with simpler measures of spike–
LFP relationships such as phase-locking
strength (Fig. 2B). Furthermore, across
the population, MT neurons had very
consistent preferred phases of the local
LFP signal (Fig. 4D), despite wide varia-
tion in their stimulus tuning and degree of
coupling to the LFP.

Using MUA to predict MT neuron
responses
Given that the response variability of dif-
ferent cortical neurons is correlated (Bair
et al., 2001; Cohen and Kohn, 2011), one
should also be able to predict, to some ex-
tent, the trial-to-trial variability of a neu-
ron from the simultaneously recorded
activity of neighboring neurons (Fig. 5A,
top). Indeed, recent work (Okun et al.,
2015; Schölvinck et al., 2015) has shown
that simply taking the average firing rate
among a group of simultaneously re-
corded neurons [“population rate” (PR)]
can be highly predictive of the trial-to-
trial variability of a neuron (Fig. 5A, bot-
tom). We thus tested whether the
recorded MUA might offer improve-
ments to the prediction of single-neuron
responses similar to those of the LFP-
based model.

First, we considered the coupling be-
tween a given MT neuron and the popu-
lation rate (Fig. 5B), which we modeled
with a linear temporal filter acting on the
PR. Consistent with previous work (Okun
et al., 2015), the coupling between single-
neuron responses and PR typically de-
cayed as a function of latency (Fig. 5C),
with a median decay time constant of
15.5 � 2.4 ms (n � 93). Inclusion of the
PR-coupling term significantly improved
model performance relative to the stimu-
lus-processing model alone (1.51 � 0.14-
fold increase in LLx, p � 10� 11, n � 93,
Fig. 5D), although this was less than half
of the increase gained from the LFP com-
ponent (Fig. 3A).

Another possibility is that only the activity of a subset of re-
corded neurons would be useful for predicting the activity of a
given neuron. To test this possibility, we fit models with separate
temporal filters applied to each recorded MUA signal (Fig. 5E),

rather than a single filter applied to the PR. This analysis revealed
that neurons recorded from nearby electrodes contribute most to
predicting the single-neuron response (Fig. 5F), suggesting that
the most useful interneuronal correlations are locally clustered
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Figure 3. Dramatic improvement of model performance with the inclusion of the LFP component. A, LLx values calculated for
stimulus-processing models (left), and models that included either the LFP from the same electrode (middle) or all electrodes
(right), for all neurons in the study. LLx values were calculated at both 25 ms (left) and 5 ms (right) time resolution. To demonstrate
the relative performance of each model across all neurons, we also normalized each LLx value by that of the best model for that
neuron (introduced below), and thus no model median reaches the (dashed) unity line here. The inclusion of the LFP component
yields a more than threefold improvement in performance over the stimulus-processing model at 25 ms resolution (approximately
the time course of the stimulus-locked rate). When considered at a higher time resolution (5 ms), the LFP model yields a median
fivefold performance improvement, due to information about finer spike timing gained from the gamma-band LFP. B, The total
variance of predicted firing rates from different models, normalized by the measured variance (left) or the variance of the best
model for that neuron (right). C, Model performance improvement is tightly correlated with the increase in the variance of model
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(r � �0.64, p � 10 � 10).
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(Smith and Kohn, 2008). However, although the full MUA model
term had many more parameters than the PR term, it provided
only moderate improvements in model performance (Fig. 5D;
1.09 � 0.2-fold increase over the PR model, p � 10� 5, n � 93).
This suggests that a single coupling term in the PR can largely
capture the variability in single-unit firing that might be extracted
from MUA (Okun et al., 2015).

The relative contributions of MUA and LFP signals to
predicting variability
To compare the contributions of the two signals reflecting corti-
cal “network activity” (LFPs and MUA) to predicting MT neuron
response variability, we combined the stimulus-processing, LFP,
and MUA components into a single model (Fig. 6A). By simulta-
neously fitting the parameters of all three components, the com-
bined model automatically accounts for the correlations among
these various signals, assigning weights only to those elements
that best explain the MT neuron response. Thus, sequentially
adding model components can reveal the degree to which each
component contributes unique information that is not present in
other components. Direct comparisons of model improvement
(Fig. 6B) revealed that the MUA signals contained largely redun-
dant information with the LFP, because adding MUA compo-
nents to the stimulus–LFP model yielded very little improvement
in model performance (1.04 � 0.02-fold increase in LLx, p �

0.003, n � 93). This suggests that LFPs contain richer informa-
tion about the elements of ongoing network activity relevant to
trial-to-trial variability relative to MUA.

To gain further insight into this, we separately analyzed the
contributions of LFP and MUA model components to predicting
both the stimulus-locked and trial-variable components of neu-
ral activity, again using trials with repeated presentations of fro-
zen noise stimuli (Fig. 6C). Model components producing the
same output on every trial can only contribute to predicting the
stimulus-locked component of the response, while model com-
ponents whose output is variable from trial to trial will contribute
to capturing the trial-variable response. By construction, the
stimulus-dependent component of the model was fixed across
trials (Fig. 6D, second column). In contrast, the output of the
LFP component had very few stimulus-locked features (Fig.
6D, third column), suggesting that it mainly contributed to
trial-variable components of the spiking response. Finally, the
MUA model component was smaller in magnitude, but typi-
cally had clear stimulus-locked and trial-variable compo-
nents, with similarities to both the stimulus-dependent and
LFP component outputs (Fig. 6D, right).

To quantify these different elements of the model predictions,
we decomposed the output of each model component into its
across-trial average (i.e., its contribution to predicting the PSTH
of the neuron; Fig. 6D, bottom, black curves) and its trial-to-trial
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variability (e.g., red curves minus black
curves), and compared the variance of
each to the total firing rate variances esti-
mated from the measured data (Fig. 6E).
To begin with, the stimulus-processing
model alone accounted for 29 � 23% of
the stimulus-locked rate variance, and
none of the trial-variable variance. Both
the LFP and MUA components contrib-
uted to the stimulus-locked variance, pro-
ducing a combined model that captured
42 � 23% of the observed stimulus-
locked variance.

However, the bulk of the improvement
gained by the full model came from the
LFP component capturing trial-to-trial
rate fluctuations. Such fluctuations were
not predicted at all by the stimulus-
processing model (0%), but jumped to
44 � 35% of the estimated trial-variable
variance (see Materials and Methods) for
the stimulus–MUA–LFP model. The LFP
component was responsible for the bulk
of this contribution, and the stimulus-
LFP model (without the MUA compo-
nent) predicted 39 � 34% of the trial-
variable variance. The predictions of the
full stimulus-MUA-LFP model captured
43 � 28% of the total variance of MT neu-
ron firing rates.

LFP signals predict correlated response
of pairs of neurons
Trial-to-trial response variability is often
shared among simultaneously recorded
neurons, and exhibits complex structure
across a range of spatial and temporal
scales (Zohary et al., 1994; Cohen and
Kohn, 2011). Because LFPs are thought to
reflect synchronous synaptic inputs to an
area (Buzsáki and Draguhn, 2004; Ei-
nevoll et al., 2013), the LFP models might
also explain the correlated trial-to-trial
variability among neurons (known as
noise correlations). To test this possibil-
ity, we first calculated the cross-
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4

of recorded neurons (n � 93). D, Left, The LLx of the PR and
MUA models across the population of recorded neurons. Right,
The same data, showing the normalized LLx across all neurons
(as in Fig. 3), where the LLx of each model was normalized by
the LLx of the best model for that neuron (see below). The
normalized LLx is thus on the same scale as the LFP models
considered earlier (Fig. 3), demonstrating that the PR-based
models have less than half the performance of the LFP-based
models. E, Schematic of the MUA model, where the MUA com-
ponent replaces the PR component considered above (B). F,
Left, A typical MUA model component, showing weights on
MUA as a function of time lag (horizontal axis) and electrode
depth (vertical axis) for the same neuron as the example in the
top left panel in B. Right, Average of all MUA model compo-
nents across the population of recorded neurons.

4130 • J. Neurosci., April 6, 2016 • 36(14):4121– 4135 Cui et al. • Inferring Variability from Local Field Potentials



correlation between the responses of simultaneously recorded
pairs of neurons on repeat trials, correcting for stimulus-driven
effects using a “shift predictor” (see Materials and Methods). This
revealed a variety of noise correlation structures across the pop-
ulation (Fig. 7A, left column). We then calculated the noise cor-
relations predicted from the network-based models for each pair

of neurons. The LFP-predicted noise correlation functions con-
sistently captured the temporal structure of the observed noise
correlations, such that the correlation between observed and pre-
dicted noise correlation functions had a median value of 0.63 �
0.04 (Fig. 7B). By comparison, the PR model (Okun et al., 2015;
Schölvinck et al., 2015) was largely limited to capturing correla-
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tion functions with a single peak at or around zero latency (Fig.
7A, red), which was less accurate over all pairs than the LFP
model at capturing the shape of the correlation function (Fig. 7B;
median correlation coefficient � 0.56 � 0.06, p � 0.05).

The LFP-based prediction of noise correlations could also ac-
count for the magnitude of noise correlations on a pair-by-pair
basis (Fig. 7C; Pearson correlation coefficient � 0.766, slope �
0.40, p � 10� 14), which was much better than the PR model
(Pearson correlation coefficient � 0.500, slope � 0.17, p �
10� 14). This ability to predict the relative coupling strength be-
tween pairs of neurons was intact even though the magnitudes of
the predicted noise correlation were a factor of three smaller than
the observed correlations, likely because each model explained a
fraction of the response variance of individual neurons. As ob-
served in previous studies (Smith and Kohn, 2008), pairwise
noise correlation strength decreased systematically with the dis-
tance between the neurons, and the LFP models were able to
capture this relationship (Fig. 7D). This suggests that compo-
nents of the LFP can predict much of the observed noise correla-
tion structure across pairs of neurons.

Discussion
While the function of sensory neurons is typically evaluated
based on their responses to sensory stimuli, a large fraction of the
activity in sensory cortex is not predictable from the stimulus
(Ermentrout et al., 2008; Masquelier, 2013; Goris et al., 2014).
Here we show that in area MT of the awake macaque cortex, on
average more than half of the firing rates of neurons are not
explainable from the stimulus alone during a passive viewing of a
naturalistic motion stimulus (Cui et al., 2013). As neuronal vari-
ability is often correlated between cortical neurons (Averbeck et
al., 2006; Cohen and Kohn, 2011), we hypothesized that such
variability might be due to stimulus-independent inputs that can
be captured through particular features of the measured LFPs
(Kelly et al., 2010; Haslinger et al., 2012; Ecker et al., 2014). In-
deed, a model that used LFP signals in addition to the stimulus
produced, on average, a nearly fivefold improvement in predict-
ing MT neuron responses. This dramatic performance improve-
ment was largely due to the ability of these models to predict close
to half of the trial-to-trial firing rate variability, leveraging the
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trial-variable elements of the LFP signals. This suggests that the
identified elements of the LFP represent coordinated inputs that
were largely distinct from stimulus-driven inputs. Likewise, the
aspects of the neural responses inferred from the LFP, as a result
of being almost entirely trial variable, were clearly distinct from
the activity of simultaneously recorded neurons and, thus, likely
reflected unique information about inputs onto the recorded
neurons.

Inference of relevant network activity using LFPs
A fundamental barrier to the investigation of how ongoing net-
work activity influences the stimulus processing of a cortical neu-
ron is the difficulty in recording from the many different inputs
of a neuron, which will generally originate from both nearby
cortical neurons as well as from projections from other brain
areas. LFPs are potentially able to provide this information, be-
cause they are thought to be strongly influenced by synchronous
synaptic inputs and, as a result, will often reflect inputs from
other areas that are not necessarily apparent in local spiking ac-
tivity (Buzsáki and Draguhn, 2004; Khawaja et al., 2009; Einevoll
et al., 2013). Different sources contributing to the LFP will often
be overlapping in time but will exhibit dynamics on different
timescales (Buzsáki and Draguhn, 2004), and particular oscilla-
tion frequencies have been attributed to the activation of differ-
ent cortical microcircuits, which can have distinctive signatures
as a function of depth within the cortical column (Schroeder and
Lakatos, 2009; Xing et al., 2009; de Cheveigné et al., 2013). Our
statistical framework allowed for all depths and frequencies to be
analyzed simultaneously to best infer the components of network
activity relevant to a given cortical neuron.

Furthermore, by fitting a joint stimulus–LFP model, this ap-
proach specifically identified frequency bands of the LFP relevant
for predicting the components of neural activity that cannot ex-
plained by the stimulus alone (i.e., trial-to-trial variability). In
this way, our model-based analysis has an important advantage
relative to simple analyses of spike–LFP coupling, such as coher-
ence and phase locking (Lachaux et al., 1999; Fries et al., 2001), in
that it is not confounded by the strong, and generally complex,
relationships that exist among the stimulus, the activity of other
neurons, and the various components of the LFP signals (i.e.,
different frequency bands and depths). As a result, our models
typically focused on a small subset of these LFP components
(relative to measures such as phase-locking strength) and specif-
ically identified elements of the LFPs that are predictive of the
trial-variable component of the responses of neurons. Note that
the functional form of the LFP component that we considered
here resembles previous treatments (Haslinger et al., 2012) and
also is mathematically equivalent to processing in the time do-
main (Kelly et al., 2010).

Our analysis identified the following two bands in the LFP that
were most important in predicting MT neuron responses: the
delta band (1– 4 Hz) and the gamma band (30 –70 Hz). While the
influence of the gamma band was primarily confined to the same
or neighboring electrodes relative to the recorded unit, the influ-
ence of low-frequency bands was often strongest at other depths.
Although the geometry of our multielectrode recordings pre-
vented determining which cortical lamina the different signals
arose from, it is likely that such influences will have a consistent
laminar structure (Schroeder and Lakatos, 2009; Xing et al., 2009;
de Cheveigné et al., 2013). While gamma-band activity has been
associated with cortical neuron firing rates in numerous contexts
(Nir et al., 2007; Burns et al., 2010; Buzsáki and Wang, 2012; Jia et

al., 2013), the delta band is only of recent interest (Lakatos et al.,
2008; Nácher et al., 2013).

Inference of relevant network activity using simultaneously
recorded neurons
We found that incorporating the effects of simultaneously re-
corded MUA could nearly double the performance of model pre-
dictions over the stimulus-processing model alone, consistent
with a number of recent studies using neighboring neural activity
to improve model predictions in the retina (Pillow et al., 2008)
and cortex (Kelly et al., 2010; Ohiorhenuan et al., 2010; Ecker et
al., 2014; Okun et al., 2015). However, such improvements were
significantly smaller than the fivefold improvements provided by
the LFP in predicting MT neuron responses. Furthermore, the
addition of the MUA term into a stimulus–LFP model offered
only negligible improvements, suggesting that the MUA contri-
butions were already predicted by the LFP. We do not believe that
having more simultaneously recorded units would further im-
prove the stimulus–MUA model performance, because individ-
ually weighting the different recorded units to maximize model
performance revealed that the largest influences on MT neuron
firing were from neighboring neurons. Individually weighting
each recorded unit only offered small improvements over pool-
ing over all recorded neurons to use a “population firing rate,” as
suggested in other recent work modeling variability (Lin et al.,
2015; Okun et al., 2015).

Why did the MUA-based model offer a much smaller im-
provement than the LFP-based model? One clear advantage of
the LFP model is that it has extra degrees of flexibility in selecting
the magnitude of coupling to different bands (as well as depths),
which allows for each neuron to couple to a variety of compo-
nents and dynamics, whereas the MUA only provides a single
temporally varying element. Such flexibility is likely necessary,
for example, to explain the nonsymmetric noise correlations ob-
served for some simultaneously recorded neuron pairs (Fig. 7). In
contrast, the MUA term can only represent shared firing rate
fluctuations across the population, which necessarily must aver-
age together shared stimulus processing and shared trial-variable
inputs (Fig. 6).

Intrinsic to the increased flexibility of the LFP model is the
fact that the LFP itself can represent multiple elements of
cortical dynamics (Buzsáki and Draguhn, 2004) and, in par-
ticular, is thought to be strongly influenced by synchronous
synaptic inputs (Buzsáki and Draguhn, 2004; Khawaja et al.,
2009; Einevoll et al., 2013), which are likely sources of MT
neuron modulation. In contrast, MUA activity will be limited
to representing only those inputs that result in synchronous
spiking across the population.

Function of cortical variability
The visual cortex has been long recognized to be “noisier” than
earlier processing stages (Kara et al., 2000). While such neuronal
variability can be indicative of noise that is disruptive to cortical
function (Faisal et al., 2008), it also might be a signature of unex-
plored aspects of cortical function that are related to ongoing
processes not controlled by the stimulus (Reynolds and Chelazzi,
2004; Stein et al., 2005; Masquelier, 2013). The success of the LFP
model in identifying the trial-to-trial variability of single neu-
rons, as well as the form of noise correlations between pairs of
neurons (Fig. 7), indeed suggests that such variability is the result
of modulation by shared cortical inputs that are independent of
the stimulus. In the context of the passive fixation task considered
here, it is not clear whether there is a functional “role” of such
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modulation. However, changes in the properties of LFPs, as well
as changes in the relationship between spikes and LFPs, have been
associated with cognitive and behavioral variables in a large array
of previous experiments (Fries et al., 2008; Schroeder and Laka-
tos, 2009; Banerjee et al., 2012; Nácher et al., 2013), and likewise
the LFP is an effective signal for the control of brain–machine
interfaces (Hwang and Andersen, 2013). The trial-to-trial vari-
ability of the activity of MT neurons during perceptual discrim-
ination tasks is also correlated with the subject’s decisions
(Britten et al., 1996; Purushothaman and Bradley, 2005; Nien-
borg et al., 2012). The ability of this approach to identify signa-
tures of neural modulation in the LFP related to trial-to-trial
variability in these passive conditions might thus provide a win-
dow into the influences of higher-level cognitive processes when
applied in task-specific conditions.
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