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Contextual modulation is observed throughout the visual system, using techniques ranging from
single-neuron recordings to behavioral experiments. Its role in generating feature selectivity within
the retina and primary visual cortex has been extensively described in the literature. Here, we describe
how similar computations can also elaborate feature selectivity in the extrastriate areas of both the
dorsal and ventral streams of the primate visual system. We discuss recent work that makes use of
normalization models to test specific roles for contextual modulation in visual cortex function. We
suggest that contextual modulation renders neuronal populations more selective for naturalistic stimuli.
Specifically, we discuss contextual modulation’s role in processing optic flow in areas MT and MST and for
representing naturally occurring curvature and contours in areas V4 and IT. We also describe how the
circuitry that supports contextual modulation is robust to variations in overall input levels. Finally, we
describe how this theory relates to other hypothesized roles for contextual modulation.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Visual information is rarely found in isolation. A typical scene
contains many objects, each of which can be defined by its own
combination of visual features. Many of these features, such as
orientation and spatial frequency, are extracted by dedicated
mechanisms in the early visual system. These circuits are thought
to generate feature selectivity in part by repeatedly filtering and
pooling feedforward inputs. For example, a V1 neuron could develop
orientation tuning by selectively pooling the outputs of several cir-
cular LGN receptive fields (Hubel & Wiesel, 1962); the LGN receptive
fields, in turn, arise from filtering and pooling in the retina and
retinal ganglion cells. Since the neurons implementing these
operations have small spatial receptive fields and short memories,
it may seem like processing should be quite local in space and time.

However, it has long been known that the processing of a visual
stimulus is affected by the overall gestalt, or context, in which it
occurs. The presence of a stimulus, even one that cannot directly
drive a neuron’s feedforward inputs (e.g., because it is outside
the cell’s spatial receptive field or its tuning passband), can affect
how the cell responds to other stimuli that do engage its feedfor-
ward inputs.

A whimsical example of this effect can be found in Quiroga et al.
(2005), who recorded the activity of medial temporal lobe (MTL)
neurons in human patients while the patients viewed photographs.
One neuron, shown in Fig. 1, responded strongly and almost exclu-
sively to photos of the actress Jennifer Aniston (shaded regions in
the top row), regardless of the low-level features (e.g., color, edge
orientation) that comprise her portrait. This selectivity and invari-
ance is common in high-level cortical areas (Desimone et al., 1984;
Tsunoda et al., 2001), but virtually unheard of in lower ones, where
cells respond to any stimulus containing an appropriate angle or
hue (Hubel & Wiesel, 1968; Leventhal et al., 1995). However, there
is virtually no response to images that contain both Aniston and
her then-husband, actor Brad Pitt (Fig. 1, top-right), again
regardless of the low-level features that make up his appearance.
Thus, one might conclude that Brad Pitt’s presence suppresses
the cells’ responses to Jennifer Aniston.

However, other models might also explain these responses. The
response pattern might reflect selectivity for a specific, low-level
feature (e.g., orientation or color) that happens to be present in
all of the Aniston images but none of the Aniston + Pitt images.
Or perhaps any stimulus accompanying Aniston, other than the
background, leads to suppression. Because the stimulus features
that activate MTL neurons are not well understood, there is
little basis for estimating the contribution of these different
mechanisms.

The difficulty in modeling such complex visual selectivity thus
arises from the variety of possible inputs and, in many cases, from
a lack of detailed knowledge of the computations performed by
cortical neurons selective for complex stimuli. Recent work in this
area has attempted to solve this problem by leveraging the
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available knowledge on low-level visual processing. We suggest
that a particularly fruitful approach is to present neurons with a
large variety of stimuli that explore, to the extent possible, a wide
range of feature combinations. The resulting data are then fit to
models that approximate the hierarchical structure of the visual
system (Brincat & Connor, 2004; Mineault et al., 2012; Rust et al.,
2006). Thus, for example, models of V2 can be framed as
performing computations on the outputs of simulated V1 neurons,
rather than operating on the raw visual input (Coen-Cagli &
Schwartz, 2013). The precise operations that are used typically
include feedforward filtering, as well as contextual modulations
such as normalization.
2. Contextual modulation in striate cortex

Contextual modulation is typically measured in neurophysio-
logical experiments using a simple paradigm. Investigators isolate
a neuron and map its classical receptive field (CRF). They then
compare responses to stimuli placed only within the cell’s CRF
with those that extend beyond its boundaries. When the contents
of the CRF are identical in the two conditions, any observed
difference is then ascribed to contextual modulation, and the
spatial area producing these effects is called the non-classical
receptive field (nCRF), or surround.

Although there is some evidence for excitatory contextual
modulation (Angelucci & Bressloff, 2006; Bringuier et al., 1999),
the net effect of nCRF stimulation is typically suppressive:
stimulating the nCRF with large, high contrast stimuli reduces V1
neurons’ firing rates by 40–70%, compared to CRF-only stimulation
(reviewed in Series et al. (2002)); similar results have also been
obtained in extrastriate areas. Several functional roles have been
proposed for this modulation, including the following:
Fig. 1. Do MTL neurons exhibit complex contextual modulation? Quiroga et al. (2005) r
viewed images. This neuron responded vigorously (individual trials shown in center; per
Aniston, but was suppressed whenever Brad Pitt was also in the photograph. However, w
perform that might evoke this suppression. Reprinted by permission from Macmillan Pu
� figure-ground segmentation (Allman, Miezin, & McGuinness,
1985),
� redundancy reduction (Atick & Redlich, 1990; Dong & Atick,

1995),
� generation of a sparse code (Vinje & Gallant, 2000),
� firing rate control/metabolic efficiency (Attwell & Laughlin,

2001), and
� noise rejection (Chen, Geisler, & Seidemann, 2006).

These hypotheses all share a common feature: contextual
modulation is used to refine existing feature representations that
have been generated by other—unspecified, but presumably
feedforward—circuitry. Here we review evidence suggesting that
contextual modulation can do more, and actually creates neural
selectivity for new and complex visual features. There is almost uni-
versal agreement that this occurs in the retina, where contextual
modulation—implemented through lateral inhibition—converts
the absolute luminance information captured by the retina into a
new image feature, local contrast (Hartline, 1940; Kuffler, 1953).
This review focuses on the consequences of iterating similar mech-
anisms across multiple visual cortical areas, a topic that has been
explored less thoroughly (but see Gautama & Van Hulle, 2001).

Contextual modulation is typically thought to arise from inter-
actions between neurons. These interactions can take several
forms. When expressed mathematically as a subtraction of two
quantities, akin to the integration of IPSPs and EPSPs, the modula-
tion is usually called opponent inhibition (Hurvich & Jameson,
1957; Reid & Shapley, 1992). Interactions between neighboring
bipolar or amacrine cells, for example, are often described
using opponent models. When these interactions are expressed
using a divisive interaction between neurons—or populations of
neurons—the resulting model is usually called a normalization
model. These models have a long history in visual neuroscience
ecorded the activity of a medial temporal lobe (MTL) neuron while human patients
istimulus histograms shown in the bottom row) whenever the patient saw Jennifer
e know very little about MTL neurons’ feature selectivity or the computations they
blishers Ltd.: Nature (Quiroga et al., 2005) � 2005.
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Fig. 2. Circuitry for size tuning/surround suppression in primary visual cortex. (A)
Input–output relationships for excitatory pyramidal cells and inhibitory interneu-
rons, redrawn from Nowak et al. (2003). Interneurons have a higher gain than
pyramidal cells, but also require more input to begin firing at all. This mismatch
produces spatial summation in low contrast conditions where cells receive weak
synaptic input, and surround suppression at higher contrasts when they receive
stronger synaptic input. (B) Feed-forward input drives both lateral excitatory
connections (green), but also activates inhibitory interneurons (red). The interneu-
rons’ higher gain allows them to suppress some of the lateral activity, shrinking the
cell’s receptive field and creating a suppressive surround. (C) Feed-forward input
fails to activate the inhibitory interneurons, so excitation spreads via lateral
connections. This produces spatial summation and a larger receptive field. The
circuits in B and C are simplified versions of the circuit proposed by Angelucci,
Levitt, and Lund (2002). Their complete model contains an additional source of
inhibition, not shown here, to account for orientation-dependent effects.
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(Grossberg, 1973; Naka & Rushton, 1966), and some researchers
have argued that normalization is a ‘‘canonical [form] of neural
computation’’ that can be found across diverse brain areas and
species (Carandini & Heeger, 2012). Since they have gained such
widespread acceptance in the vision literature, normalization
models provide a means of comparing computations across
different brain regions.

The basic structure of a normalization model (Grossberg, 1973;
Naka & Rushton, 1966) is as follows. The response Ri of a single
neuron i is given by:

Ri ¼ M
IiP

jwjIj þ r
ð1Þ

where M is the maximum firing rate, Ii is the sum of the neuron’s
excitatory input, r is a constant, and the Ijs represent inputs from
other neurons, weighted by the corresponding wjs. The ensemble
of Ijs and wjs defines the normalization pool. Functionally, the nor-
malization pool allows the response of a neuron to be influenced
by stimuli, or even non-visual inputs, that by themselves have little
or no net influence on the neuron’s response. In other words, it
provides contextual modulation. As we describe below, the
constitution of the normalization pool is crucial for understanding
contextual modulation in the visual cortex.

2.1. The normalization model of contrast gain

Early applications of the normalization model to the primate
visual cortex (Albrecht & Geisler, 1991; Heeger, 1992) proposed a
normalization pool comprised of neurons tuned collectively to all
orientations and spatial frequencies. This untuned normalization
mechanism effectively encodes the total contrast in a local image
patch. In this approach, both the feedforward input to the neuron
Ii and the total activity in the normalization pool are assumed to
be proportional to contrast c. Thus Ii = cTi(h), where T represents
the feedforward tuning of the neuron over the space of features h
and k is a free parameter; Eq. (1) then becomes:

Ri ¼ M
cTiðhÞ
kc þ r

ð2Þ

As a result of this formulation, there is a nonlinear relationship
between contrast and the neural response, but, importantly, the
neuron’s selectivity for stimulus features, as determined by the
ensemble of excitatory input, is independent of contrast. This
seems like a desirable property in general, as there is no reason
why visual perception of the surrounding environment should
change with contrast. Moreover, it is consistent with the frequent
observation that the tuning of V1 neurons for stimulus orientation
is invariant to changes in contrast (Anderson et al., 2000).

2.2. The normalization model of size tuning

The basic untuned normalization mechanism described above
can account for another common property of visual cortex neu-
rons: size tuning. Most V1 neurons in the primate respond more
strongly as stimulus size is increased, up to the point at which
the stimulus fills the entire classical receptive field. As size is
increased further, the response often begins to decrease (Hubel &
Wiesel, 1965; Series, Lorenceau, & Fregnac, 2003), typically settling
at a level that is less than half that of the response observed at the
optimal size. These findings can be accounted for with a simple
extension to the normalization model. If the normalization pool
includes neurons with receptive fields in a variety of different
positions, suppression of the input will be observed for large
stimuli, which increase the denominator of Eq. (1), but not the
numerator. This phenomenon is often called surround suppression.
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Fig. 2 illustrates a circuit that produces size tuning/surround
suppression in primary visual cortex.
Fig. 3. Contextual modulation is required to recover global motion. V1 neurons can
only detect motion in one direction (small green arrows), along the minor axis of
3. Contextual processing in extrastriate visual cortex

Most theoretical and empirical work on contextual modulation
has focused on the primary visual cortex, as outlined above. This
makes sense, given the relatively advanced state of knowledge
on the anatomy and functional organization of V1 (Angelucci &
Bressloff, 2006). However, the role of contextual modulation in
vision must also be understood with reference to the extrastriate
cortex, a collection of brain regions that are generally thought to
be more closely associated with conscious visual perception.
In this section, we describe recent progress in understanding
the impact of contextual modulation on extrastriate cortical
function.
their receptive fields. Real motion, however, is less constrained. (A) Averaging the
output of two such detectors sometimes correctly recovers an object’s motion (large
black arrow). (B) The object in B has twice the contrast as the object in A; this
activates each V1 subunit twice as much as in A. However, averaging the output of
these two detectors would erroneously suggest that object B was moving in the
same direction and at the same speed as object A. (C) The asymmetric shape of the
object in C activates more rightward neurons than upward neurons, even though
the object is moving in the same direction as in A. Mutual suppression between
similarly-tuned direction detectors (curved red arrows) ensures that the object is
seen moving in the appropriate direction. See Section 3.1 for more details.
3.1. Motion processing and tuned normalization

Extrastriate cortical regions can, broadly speaking, be assigned
to two categories. The first is a dorsal pathway originating in V1
and terminating in the parietal cortex; the second ventral pathway,
also originating in V1, projects toward the temporal lobe and
hippocampal structures (Felleman & Van Essen, 1991; Mishkin &
Ungerleider, 1982).

Of the two pathways, the dorsal (motion) pathway is somewhat
better understood, in part because the space of relevant stimuli is
more easily parameterized. Since the eyes themselves are almost
never still (Otero-Millan et al., 2008), and objects are typically sta-
tionary (Stocker & Simoncelli, 2006), most motion encountered by
the visual system is due to displacement of the eye in space, either
through saccades, smooth pursuit, head rotation, or navigation.
The resulting optic flow stimuli are thus constrained by the transla-
tion and rotation of the eye and by the structure of the surrounding
environment. By making simplifying assumptions about the latter,
we can reduce the number of motion stimuli to a manageable
subspace; neuronal responses can then be studied by modeling
the transformation of stimuli within this space into firing rates.

The modeling effort is further simplified by the fact that the
visual cortex regions devoted to motion processing in the primate
have been studied thoroughly (Born & Bradley, 2005). For example
we have a fairly good understanding of the estimation of motion by
subpopulations of neurons in the primary visual cortex (V1). The
responses of these neurons can be reasonably well approximated
with motion energy models (Adelson & Bergen, 1985), which,
importantly, can be elaborated upon to include contextual modu-
lation (Tsui et al., 2010). Moreover, the subsequent transformation
of V1 outputs into stimulus selectivity in the middle temporal (MT)
area is also relatively well-understood (Born & Bradley, 2005). By
leveraging the large body of existing literature on these topics,
we can examine quantitatively the function of contextual modula-
tion in motion processing.

Fig. 3 illustrates some possible roles for context modulation in
motion processing. The small receptive fields of V1 neurons
(purple ovals) limit their ability to extract estimates of velocity
for larger objects composed of oriented edges. This is known as
the ‘‘aperture problem’’ in the vision literature (Marr & Ullman,
1981); it is a specific case of the more general fact that local
information is not necessarily indicative of global structure. The
aperture problem is particularly useful as a probe of visual process-
ing, because it provides a simple geometric way to dissociate local
and global image motion. In the cartoon example in Fig. 3A, the V1
neurons would report purely vertical or horizontal motion (thin
arrows), even though the rectangle is moving obliquely (thick
arrow). The correct motion direction can thus only be recovered
by combining inputs across local motion directions, as is done in
MT.

Contextual modulation can facilitate the process of combining
inputs. If the responses of the V1 neurons were linear in contrast,
an MT neuron that summed their outputs would not be able to
distinguish between the two stimuli shown in Fig. 3A and B, even
though their motion directions differ by 45�. This results from the
fact that the contrast of the stimulus in Fig. 3B is twice than that of
the contrast in Fig. 3A. Consequently a high-contrast, rightward
moving stimulus would elicit the same response as a low-contrast,
obliquely moving object. Contrast normalization of the kind
implemented by Eq. (2) could ameliorate this problem, as it causes
individual V1 neurons’ responses to saturate at low contrasts.
Consequently the summed response of the pair of V1 neurons to
the stimulus in Fig. 3A would be greater than that to the stimulus
in Fig. 3B. Thus contrast normalization can have dramatic effects
on downstream neuronal selectivity.

Fig. 3C poses a different sort of challenge. The object moves in
the same oblique direction as that in Fig. 3A, but its asymmetric
shape activates more V1 neurons tuned to rightward motion. Ide-
ally an MT neuron tuned to upward–rightward motion would
respond identically to the stimuli in Fig. 3A and C, and this is
indeed what generally happens (Tsui et al., 2010). Contextual mod-
ulation can contribute to this process: if there is suppression
among rightward-tuned V1 neurons, the additional activity due
to the longer edge will be countered by additional suppression
due to the contextual modulation. Thus the total output of all
rightward motion detectors in the vicinity of the object will be lar-
gely invariant to stimulus size and contrast (Tsui et al., 2010). This
type of stimulus-tuned modulation allows contextual modulation
to generate invariances that aid motion processing, as well as other
functions (Carandini & Heeger, 2012), some of which are outlined
below.
3.1.1. Contextual modulation in the outputs from V1 to MT
The difficulty of determining global motion from local

information was originally pointed out on psychophysical grounds
(Wallach, 1935, translated by Wuerger, Shapley, & Rubin, 1996).
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This and related perceptual phenomena motivated theoretical
models (Lorenceau et al., 1993; Rubin & Hochstein, 1993; van
den Berg & Noest, 1993) that hypothesized contextual modulation
at an early stage, perhaps as early as V1. Common to all these
models was the notion that contextual modulation could simplify
the integration of motion signals in downstream brain regions.
Qualitatively this mechanism would seem to be consistent with
the suppressive contextual interactions previously reported in V1
(Dobbins, Zucker, & Cynader, 1987; Hubel & Wiesel, 1965;
Pack, Born, & Livingstone, 2003; Versavel, Orban, & Lagae, 1990).
Such interactions would complement other mechanisms
(e.g., Simoncelli & Heeger, 1998) that are hypothesized to be at
work at the level of MT (for detailed reviews, see Born & Bradley,
2005; Bradley & Goyal, 2008).

One simple way to model these contextual interactions is with a
normalization model of the form:

Ri ¼ M
Ii

k1Ii þ
P

jwjIj þ r
ð3Þ

It is interesting to note that this model is quite similar algebra-
ically to a simple reiteration of the basic normalization model
described above (Rust et al., 2006). That is, one obtains the
equation above by simply taking the output of Eq. (1) and
normalizing it again by itself. The resulting equation has one term
in the denominator that depends on all other neurons within the
local network (the Ijs), as in the untuned contrast normalization
model, and another, tuned component1 (Ii). Ringach, Hawken, and
Shapley (2003) have also used a similar framework to study
orientation tuning in V1. These formulations decouple the excitatory
and suppressive components, which allow the model’s selectivity to
dramatically increase.

Rust et al. (2006) developed a model in which the variability in
response properties across the population of MT neurons was
assumed to be due to variations in the parameters of a similar
equation. They tested the model on data in which MT neurons
were stimulated with plaid stimuli comprised of sinusoidal
gratings drifting in different directions. The direction of each
grating by itself is ambiguous as a consequence of the aperture
problem, but the stimulus velocity can be recovered accurately
provided that there are two or more gratings present in the stim-
ulus (Adelson & Movshon, 1982). Rust et al. (2006) found that,
for neurons that accurately encoded the plaid motion direction
(i.e. that exhibited pattern selectivity), the tuned normalization
parameter k1 was particularly important. Models incorporating
similar tuned normalization mechanisms also accurately predict
MT neurons’ responses to moving natural scenes (Nishimoto &
Gallant, 2011) and bars (Tsui et al., 2010). Nishimoto and Gallant
(2011) augmented a motion-energy model with a static non-
linearity and a divisive normalization stage. These components indi-
vidually increased the model fit by between 10% and 15%; adding
both components led to further (significant) increase in performance
and allowed the final model to explain nearly 35% of the explainable
variance, on par with contemporary models of other cortical areas.

Tsui et al. (2010) constructed a model in which basic motion
energy units (Adelson & Bergen, 1985) received tuned contextual
modulation from nearby neurons sharing the same preferences
for orientation and motion direction. Importantly, the receptive
field locations were offset spatially from those of the excitatory
input, instantiating a type of surround suppression often referred
to as end-stopping. Beck and Neumann (2011) developed a more
detailed model by including separate subpopulations of V1 neu-
rons (complex and end-stopped cells), as well as reciprocal interac-
1 As Rust et al. (2006) points out the untuned normalization model shown in Eq. (1)
can actually develop a small amount of tuning. However, the tuned model shown in
Eq. (3) can exhibit much stronger tuning.
tions between MT and V1. The tuned normalization in these
models is different from many earlier models of contextual
modulation, as it implies that the neuron’s selectivity for key
stimulus features is altered depending on the stimulus context.

One common consequence of tuned normalization is a broaden-
ing of stimulus tuning bandwidths. For a strong driving input, the
tuned normalization pushes the output of Eq. (1) toward a constant
value, effectively flattening the tuning curve around its maximum.
This does not happen for weaker inputs, because of the threshold
term r in the denominator. Thus the model predicts that tuning
bandwidth should be broader for high-contrast stimuli than for
low-contrast stimuli. Tsui et al. (2010) tested this idea explicitly
by measuring MT direction tuning for sinusoidal gratings at
different stimulus contrasts. The results confirmed the prediction:
tuning for grating stimuli was broader at high contrast, when
contextual modulation was strongest, than at low contrast, when
it was largely absent.

This latter result may seem somewhat puzzling, as the contex-
tual modulation appears to render the neurons less selective for
the relevant stimulus feature (motion). However, this decrease in
selectivity is stimulus-specific: contextual modulation improves
selectivity for stimuli that activate neurons selective for a diversity
of local features, as is necessary to recover motion direction
(Fig. 3), and as typically occurs during natural vision.

How does contextual modulation improve stimulus selectivity?
As mentioned above, in the absence of contextual modulation
individual V1 neurons carry very impoverished information about
stimulus velocity. Thus any neuron that integrates V1 outputs can
recover velocity only by combining information from multiple
inputs. The role of contextual modulation is thus to emphasize
conjunctions of inputs (Kouh & Poggio, 2008) that are consistent
with a single velocity, as proposed in various models of motion
integration (e.g., Simoncelli & Heeger, 1998).

3.1.2. Contextual modulation within MT
The function of tuned and untuned contextual modulation has

recently been examined in MT. Cui et al. (2013) recorded the
responses of MT neurons to various optic flow stimuli and then
performed a computational analysis of the roles of different
excitatory and suppressive components in generating the observed
responses. In particular, they developed models that contained
excitatory inputs from V1, along with tuned and untuned
suppression that were assumed to arise from lateral connectivity
within MT. In general, models that lacked one or both suppressive
components failed to account well for the data, suggesting that
both contribute to MT responses.

Moreover, the computational work showed that contextual
modulation altered the selectivity of MT neurons for optic flow.
Without such modulation, the cells generally were capable of
representing simple motion trajectories consisting of objects
moving in a straight line perpendicular to the line of sight. With
contextual modulation, the same neurons became selective for
more complex motion patterns that were similar to those
encountered in natural vision. These included, for example, pat-
terns consistent with motion in depth or rotation. Such patterns
involve motion in different directions in different parts of the
visual field; consequently detecting them necessarily involves the
detection of conjunctions of inputs sensitive to different local
motion directions. Contextual modulation in MT has also been
shown to be useful for extracting depth and structure from motion
(Buracas & Albright, 1996; Gautama & Van Hulle, 2001).

Thus the results in MT mirror those in V1: contextual
modulations alter stimulus selectivity in a manner that allows
for more effective processing of naturalistic stimuli. In V1
contextual modulations serve to increase selectivity in MT, and
the results of Cui et al. suggest that contextual modulations in
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MT might serve to improve selectivity in an area downstream from
MT that is selective for optic flow. The medial superior temporal
(MST) area would seem to fit the bill, as it integrates the outputs
of MT neurons, and is well known for optic flow selectivity.

3.1.3. Contextual modulation in the outputs from MT to MST
Mineault et al. (2012) examined optic flow selectivity in MST,

using the same stimulus used by Cui et al. (2013) to probe MT.
They also used a similar approach that involved fitting the
neuronal responses to a model that transformed the stimulus by
various excitatory and suppressive mechanisms. Models with
tuned normalization components, similar to those previously
proposed for MT (Nishimoto & Gallant, 2011; Rust et al., 2006;
Tsui et al., 2010), best predicted MST neurons’ responses to optic
flow stimuli. This suggests tuned normalization as a repeating motif
in cortical processing, though the details of the normalization
differed in subtle ways from those found in MT. Specifically, the
optimal normalization mechanism was quite local in space,
suggesting, somewhat surprisingly, that spatial surround suppression
in MT is not necessary to account for selectivity in MST.

The contextual modulation recovered by the Mineault et al.
(2012) approach has a functional role that is very similar to that
hypothesized for synaptic depression (Abbott et al., 1997) in other
systems. In particular, the modulation was spatially very localized,
tuned to the same stimulus features as the excitatory inputs, and
led to a saturation in the contribution of each individual MT input
to a given MST neuron. Previous work in V1 has shown that synap-
tic depression in thalamocortical synapses can mimic the effects of
intracortical normalization, and indeed the mathematical form of
the two mechanisms is nearly identical (Carandini, Heeger, &
Senn, 2002). An important question for future research then will
be to distinguish these two mechanisms experimentally, particu-
larly in the extrastriate cortex.

3.2. Contextual modulation in shape processing

The convergence of functional forms for models of motion
processing raises the question of whether similar models might
account for visual processing in other domains. Several regions of
the extrastriate cortex in primates are associated with shape pro-
cessing, including occipital areas V2 and V4 and the inferotemporal
(IT) cortex. As in the motion pathway, receptive field sizes increase
from V1 to V4 to IT, as does the apparent complexity of the
stimulus selectivity (Gattass, Gross, & Sandell, 1981; Gattass,
Sousa, & Gross, 1988). Measuring the responses to various shapes
and using the resulting data to infer the underlying transformations
can probe this selectivity.

3.2.1. Contextual modulation in the outputs from V1
The results of various quantitative studies of shape processing

support a style of computation similar to that found in the motion
processing domain. As with MT neurons, the input to V2 and V4
consists of neurons in earlier stages (such as V1) that are selective
for local stimulus features, such as orientation and spatial fre-
quency. As with motion processing, the key elements necessary
for shape recognition probably begin with tuned normalization in
V1. Specifically, tuned normalization could provide selectivity for
local curvature (Dobbins, Zucker, & Cynader, 1987; Hubel &
Wiesel, 1965; Versavel, Orban, & Lagae, 1990) a crucial element
in shape recognition. Indeed a model in which individual inputs
to V4 undergo tuned normalization accounts very well for the
selectivity of individual neurons for stimulus shape (Cadieu et al.,
2007; Hansen & Neumann, 2008), as proposed originally on
psychophysical grounds (Wilson, Wilkinson, & Asaad, 1997).

Similarly, Coen-Cagli and Schwartz (2013) argue that models of
V2 should incorporate divisive normalization occurring within the
model’s inputs from V1. Including this operation allowed the
simulated V2 neurons to perform figure-ground tasks better than
those that received unnormalized input.

3.2.2. Contextual modulation within V2 and V4
Although existing data show clear evidence for contextual mod-

ulation within V2 (Shushruth et al., 2009) and V4 (Pollen et al.,
2002), relatively little is known about the precise nature of the
modulation. Receptive fields in both areas appear to be assembled
from subunits that resemble the receptive fields of earlier areas
(V2: Anzai, Peng, & Van Essen, 2007; Nandy et al., 2013; Tao
et al., 2012; V4: Pollen et al., 2002). Multiple stimuli placed within
V2 and V4 receptive fields often elicited nonlinear response prop-
erties. These could be attributed to lateral excitation or inhibition
within V4, as was suggested based on theoretical and psychophys-
ical work (Wilson, Krupa, & Wilkinson, 2000). Zanos et al. (2011)
found evidence for similar influences in V4 by analyzing functional
connectivity among many simultaneously recorded V4 neurons.

Neurons in V2 are sensitive to both orientation and orientation
changes/discontinuities occurring within their receptive fields (Ito
& Komatsu, 2004; Tao et al., 2012; von der Heydt & Peterhans,
1989). Since this sensitivity develops very rapidly and depends
on the cell’s own orientation tuning, Schmid, Purpura, and Victor
(2014) argue that it must develop within V2. Although a fraction
of V1 neurons show similar selectivity, they only do so with delays
consistent with feedback from another cortical area (i.e., V2). This
functionality may allow V2 neurons to perform figure/ground seg-
mentation and to identify border ownership (Layton, Mingolla, &
Yazdanbakhsh, 2012; Zhou, Friedman, & von der Heydt, 2000), per-
haps in concert with higher cortical areas.

While V2 neurons have selectivity for orientation combinations
or angles (Ito & Komatsu, 2004), neurons in V4 are tuned for local
curvature (Gallant et al., 1996; Pasupathy & Connor, 1999). Yau
et al. (2013) report that V4 neurons assemble this representation
from orientation-tuned inputs, presumably from V1. V4 neurons
typically respond for �100 ms after a stimulus appears. Early
portions of the response carry information about the component
orientations that comprise local curvature, but curvature
selectivity develops gradually over the next 50 ms, consistent with
a recurrent origin for V4 curvature selectivity.

3.2.3. Contextual modulation in the outputs from V4 to IT
IT neurons integrate the outputs of neurons in V4, among other

areas, to generate quite complex selectivity for object shapes. This
selectivity has been probed quantitatively by presenting the
neurons with a large battery of static shapes and estimating model
components that best account for the observed neuronal
responses. This approach is highly analogous to the approaches
used in the dorsal stream to study motion.

Brincat and Connor (2004) devised a model in which IT neurons
integrate the outputs of V4 neurons tuned for local curvature. The
model, illustrated in Fig. 4, was of the form:

Ri ¼ a
X

m

wmIm þ bPmwmIm ð4Þ

where a and b are weighting factors. The first term in the equation
corresponds to a simple linear summation of inputs, whereas the
second term involves a multiplication of the same inputs. This
second term would be selective to input conjunctions, and part
analysis was to determine whether this extra term was justified
statistically by the complexity of the data. The results indicated that
the multiplicative term improved the fit of the model for many
neurons, and in those cells, selectivity for shape was generally
higher than in cells that lacked nonlinear responses. Thus the mul-
tiplicative interaction among inputs was critical in accounting for
shape selectivity in IT neurons.
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Fig. 4. Curvature and combinations of orientations provide important clues about an objects’ shape. (A and B) Biederman’s Cup. The complete wineglass, shown in Panel A, is
also visible in Panel B. Panel B contains less than 10% of the ink in Panel A, but preserves regions containing combinations of orientations and high curvature. This suggests
that these features, which are encoded by neurons in V2 and V4/IT, respectively, may be particularly relevant for object recognition. (Drawings after Biederman (1987).) (C)
The pooled response of V1-like subunits provides ambiguous information about local structure. On the left, a linear combination of subunits responds to pairs of oriented
edges (upper ring, Panel A). However, the circuitry may also respond to a single edge that activates one subunit very strongly (lower ring, Panel A). This ambiguity is
analogous to motion processing ambiguity shown in Fig. 3B. (D) Adding a multiplicative interaction, as in Eqs. (4)–(6), ensures that the neuron only responds to stimuli that
activate each of its subunits. Stimuli that activate multiple subunits are facilitated, while those that do not fail to activate the cell. See Section 3.2 for more details.
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Since the key function of tuned normalization appears to be to
render the neurons selective for conjunctions of inputs, it is
not surprising that there is a fairly straightforward algebraic
relationship between the Brincat and Connor model and the tuned
normalization described earlier. Consider the summed output of
two neurons that receive identical tuned normalization (Eq. (3)):

R ¼ M
I1

k1I1 þ
P

jwjIj þ r
þ I2

k1I2 þ
P

jwjIj þ r

" #
ð5Þ

This equation can be rewritten as:

R ¼ M
aðI1 þ I2Þ þ 2k2

1I1I2

k1aðI1 þ I2Þ þ k2
1I1I2 þ a2

ð6Þ

where a = k2
P

jwjIj + r. The numerator is quite similar to the Brincat
and Connor model, with separate terms corresponding to summa-
tion and multiplication of inputs.2 The denominator provides tuned
normalization, in principle facilitating the detection of conjunctions
at the next stage of processing. This suggests that stimulus selectiv-
ity in IT can arise from the same types of mechanisms that confer
selectivity on neurons in MT and MST. Similar mechanisms have
been shown to be at work in the processing of somatosensory
motion (Pei et al., 2013) as well.

Contextual modulation may also play a role in developing ante-
rior IT’s strong selectivity for specific categories and objects. Win-
ner-take-all operations are an essential component for generating
selectivity in neural models of object recognition (Riesenhuber &
Poggio, 1999), and Kouh and Poggio (2008) has shown that the
same neural circuitry can implement divisive normalization and
winner-take-all selection, while also providing a basis for
motion-energy or other linear-filtering models. Since so little is
known about the parameter space for temporal lobe visual areas,
it is difficult to directly fit models to IT data. However, there is
some limited evidence for divisive normalization in temporal lobe
areas (Zoccolan, Cox, & DiCarlo, 2005).
2 Note that the full expansion of Eq. (5) contains additional terms for all pairwise
combinations of inputs. Both Brincat and Connor (2004) and Mineault et al. (2012)
found that these terms contributed little to the quality of the model fits.
4. Modulating modulation

The results described in the previous section suggest that tuned
normalization is a simple and powerful approach for elaborating
feature selectivity, but they also indicate a potential flaw: since
the normalization is divisive, even small amounts of noise in the
input can produce large distortions. Applying the normalization
procedure multiple times, as occurs when signals flow through
the visual system, further exacerbates this problem. Since neural
noise is often correlated, simply averaging across a large normali-
zation pool cannot resolve this problem (Shadlen & Newsome,
1998). Instead, the visual system uses a different strategy: the
threshold for contextual modulation is set higher than for
excitatory inputs. As a result, contextual modulation is only active
when the corresponding inputs are relatively strong.
4.1. Stimulus properties

Neurons in most visual areas (except perhaps V4: Sani et al.,
2013) respond poorly to low contrast stimuli. In these situations,
the normalization operation is likely to be dominated by the con-
stant term r of Eqs. (1)–(3), which would reduce cells’ selectivity.
Alternately, if the total input to the normalization pool was low, a
few noisy neurons could control the normalization pool, thereby
amplifying small stochastic fluctuations in the firing rate. Pooling
responses—without normalization—avoids these problems and
effectively sacrifices some spatial resolution to increase the fidelity
of other features. This manifests itself as an increase in receptive
field size at low contrast, as occurs throughout the early visual sys-
tem, including in retinal ganglion cells, the LGN (Nolt, Kumbhani, &
Palmer, 2004), primary visual cortex, and area MT (Pack, Hunter, &
Born, 2005). Interestingly, this trade-off is probably made anew in
each visual area. For example, (Lagae et al., 1989) that the output,
but not input, layers of MT show strong surround suppression for
random dot patterns, suggesting that this suppression is not
inherited from MT’s inputs, but instead generated locally or via
feedback.

Similar phenomena also affect tuned normalization. In area
MT, contextual modulation allows MT neurons to convert the



M.R. Krause, C.C. Pack / Vision Research 104 (2014) 36–46 43
responses of individual V1 neurons, which are only sensitive to
local motion, into an accurate representation of global motion
(see Section 3.1 for details). Since this contextual modulation is
only engaged at relatively high contrasts, the perceived direction
of motion should undergo contrast-dependent changes. This
prediction has now been observed many times (Lorenceau et al.,
1993; Shiffrar & Lorenceau, 1996; Stone, Watson, & Mulligan,
1990; Weiss, Simoncelli, & Adelson, 2002).

Similar effects may also occur when viewing low luminance
stimuli. Rod photoreceptors function mainly in dim light, while
brighter stimuli engage the less sensitive cones. The cone
subsystem exhibits strong contextual modulation in the retina,
but the rod subsystem does not. Rod bipolar cells lack antagonistic
center-surround receptive fields (Bloomfield & Xin, 2000), as do
light-adapted AII amacrine cells (Xin & Bloomfield, 1999). Similar
effects can also be found in cortical areas. Chen et al. (2014)
observed that V1 studies of contextual modulation have used a
wide range of luminance levels, from a mean luminance of 3 cd/
m2 (Kapadia et al., 1995) up to 75 cd/m2 (Xing, Yeh, & Shapley,
2009). Those using dimmer stimuli (3–10 cd/m2) appear to show
weaker suppressive effects and more facilitatory effects (see
Discussion in Chen et al. (2014)), while brighter stimuli evoked
more consistent suppressive effects. This resembles the trade-off
made at low contrast: suppressive contextual modulations
increase selectivity when ample information is available, but cells
trade selectivity for reliability when less information is available.

Similar changes also occur when the visual system is challenged
with other sources of uncertainty. Short stimulus presentations
lead to inaccurate motion perception (Bowns, 1996; Lorenceau
et al., 1993). Huang, Albright, and Stoner (2007) reported that
stimulus ambiguity also affects contextual modulation. Solving
the aperture problem for contour stimuli requires integration,
which engages facilitatory modulation, but when stimulus motion
is unambiguous, suppressive contextual modulation helps extract
more accurate motion information. They subsequently proposed
an MT model, similar to the one described in Fig. 3, which uses
changes in input strength to switch between facilitatory and
suppressive regimes (Huang, Albright, & Stoner, 2008).

4.2. Attention

Under low contrast or luminance conditions, the contextual
information may be so inaccurate that it cannot provide a useful
normalization signal, even if the context is otherwise relevant.
However, there are also situations where one only wants to
consider a small part of the visual input, based on a priori informa-
tion about the locations of behaviorally-relevant objects. Moran
and Desimone (1985) demonstrated that spatial attention can
selectively gate visual processing by placing a preferred and non-
preferred stimulus inside a V4 neuron’s receptive field. They cued
the animal to attend to one of the two stimuli and found that the
neuron responded as if only the attended stimulus was present.

Spatial attention and contextual modulation appear to perform
opposite functions: contextual modulation introduces interactions
between distant stimuli, while spatial attention isolates the stimuli
at one location from the rest. How do these two phenomena inter-
act? Sundberg, Mitchell, and Reynolds (2009) found that spatial
attention can partially override contextual modulation. Contextual
modulation caused V4 neurons to fire less when stimuli were
placed both inside and outside cells’ receptive fields. However,
attending to a location inside a cell’s receptive field decreased
contextual suppression by 50%, while attending outside the cell’s
receptive field increased it by 50%, compared to a baseline
condition where attention was very far away.

Burrows and Moore (2009) found that V4 neurons were
sensitive to pop-out, a form of contextual modulation that
facilitates the detection of stimuli that are dramatically different
from the surrounding ones. However, this effect was also abolished
when spatial attention was deployed. Contextual modulation
apparently affects attended and non-attended stimuli differently.
This may reflect a common mechanism for attention and
contextual modulation, as proposed by Reynolds and Heeger
(2009). Attending to a stimulus increases its apparent contrast
(Martinez-Trujillo & Treue, 2002; Reynolds, Pasternak, &
Desimone, 2000), or equivalently, increases the input Ii in the
normalization operations described above for the attended stimuli.
A ‘‘flexible normalization pool’’ model may ensure that the tuned
normalization pool is not contaminated by stimuli that are known
to be irrelevant for the task at hand (Schwartz & Coen-Cagli, 2013).
5. Conclusion

We have shown that contextual modulation makes neurons
more selective for computationally useful image features. In many
cases, these normalization models not only fit the data better, but
also create selectivity for qualitatively different features than the
models’ feedforward inputs, as in the MT and MST data described
above.

This view of surround suppression is somewhat different from
its treatment in the psychophysical literature, which treats the sur-
round as an untuned source of suppression. For example, Tadin
et al. (2003) measured motion-detection thresholds in human
observers viewing small and large stimuli. These thresholds
increased with the size of the stimuli: subjects performed worse
at larger sizes, even though the larger stimuli contain more infor-
mation. They argued that this change matches the activity of indi-
vidual MT neurons, which fire less in response to large stimuli.
Similarly, Zenger-Landolt and Heeger (2003) had subjects perform
a contrast-matching paradigm using large and small stimuli, and
found that subjects performed more poorly at larger sizes, which
parallels the reduced BOLD activity they observed in visual areas
when subjects viewed large stimuli.

Changes in single-cell or population activity, however, may not
necessarily produce behavioral impairments. Vinje and Gallant
(2002) performed an information-theoretic analysis showing that
V1 neurons transmit more information about the stimulus when
contextually modulated. Crucially, the transmission rate
(expressed as bits/second) increases, even as the firing rate
(spikes/second) decreases, suggesting that contextual modulation
increases the amount of information sent to downstream areas.
Thus, contextual modulation may not necessarily impair all
visually guided behavior, even if it alters neural and perceptual
selectivity in a way that hinders behavioral performance on very
specific and synthetic laboratory tasks. Gepshtein, Lesmes, and
Albright (2013) recently demonstrated that adaptation, while
detrimental under specific experimental conditions, actually
represents an optimal allocation of sensory resources in the
general case. Understanding contextual modulation’s behavioral
effects under naturalistic conditions may similarly prove to be a
fruitful avenue for future research.

Contextual modulation has also been argued to create sparse or
efficient codes for individual neurons or the entire population
(Vinje & Gallant, 2000; Willmore, Mazer, & Gallant, 2011). Such
an approach seems entirely consistent with the idea of elaborating
feature selectivity (Carlson et al., 2011). One approach to
developing efficient codes starts with Attneave (1954)’s observation
that visual input contains multiple levels of redundancy. Low-level
image features such as color change slowly within an object, and
object boundaries themselves can be accurately approximated
from only a small amount of the input. Accordingly, the visual
system should generate representations that minimize the total
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amount of redundancy in the input (Barlow, 1972; van Hateren,
1992). Early visual areas may whiten the input by removing local
spatiotemporal correlations (Atick & Redlich, 1990; Dong & Atick,
1995). Repeated applications of this decorrelation procedure on
successively higher-order statistics of the input can produce new
feature representations (Schwartz & Simoncelli, 2001). For exam-
ple, decorrelation of an orientation map might yield local curvature
estimates. Karklin and Lewicki have proposed similar hierarchical
models (Karklin & Lewicki, 2005; Karklin & Lewicki, 2009) of early
visual areas. These models can leverage statistical regularity in
their inputs to create selectivity for increasing abstract stimuli
and have successfully reproduced complex cell-like phenomena.

5.1. Biophysics of contextual modulation

Since these models contain excitatory and suppressive compo-
nents, it is tempting to assume that they must map directly onto
excitatory and inhibitory neurons in the brain. However, this is
not necessarily true. Divisive normalization can be accomplished
by a variety of mechanisms (Silver, 2010), including purely feedfor-
ward circuitry (Cybenko, 1989; Heeger, 1992), shunting inhibition
(Reichardt, Poggio, & Hausen, 1983), or nonlinearities in the cells’
inputs (Abbott et al., 1997). Nurminen and Angelucci (2014) dis-
cuss the biophysical mechanisms for contextual modulation else-
where in this special issue.

5.2. Life without contextual modulation

Contextual modulation is incredibly prevalent in the brain. In
addition to the visual areas reviewed here, there is evidence for
contextual effects in brain areas representing purely abstract
concepts such as location (Franconeri, Alvarez, & Cavanagh,
2013) and value (Louie & Glimcher, 2012).

We searched the literature for examples where contextual mod-
ulation was notably absent and found very little. However, Thoen
et al. (2014) recently reported that the mantis shrimp does not
use contextual interactions to generate its representation of color.
Every other animal that has been studied—including butterflies,
goldfish, and primates—appears to rely on suppressive interactions
between photoreceptors to extract color information. However, the
mantis shrimp appear to have adopted a motor strategy that uses
scanning eye movements to drag each type of photoreceptor across
the same portion of the scene (Land et al., 1990). This creates a
temporal context, replacing the circuitry-based contextual
modulation found in other animals, suggesting that if contextual
modulation did not exist, it would still be necessary to invent it.
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